File size: 18,801 Bytes
bcfa144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ed6d7
bcfa144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62a820e
bcfa144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f9b80c
bcfa144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ed6d7
bcfa144
c8ed6d7
bcfa144
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json

from pathlib import Path
from utils import get_root_logger
from timm.models import create_model
import models_v2
import requests

import utils
import time
import sys
import datetime
import os
from snnet import SNNet, SNNetv2
import warnings

warnings.filterwarnings("ignore")
from fvcore.nn import FlopCountAnalysis

from PIL import Image
import gradio as gr
import plotly.express as px


def get_args_parser():
    parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
    parser.add_argument('--batch-size', default=64, type=int)
    parser.add_argument('--epochs', default=300, type=int)
    parser.add_argument('--bce-loss', action='store_true')
    parser.add_argument('--unscale-lr', action='store_true')

    # Model parameters
    parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
                        help='Name of model to train')
    parser.add_argument('--input-size', default=224, type=int, help='images input size')

    parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
                        help='Dropout rate (default: 0.)')
    parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
                        help='Drop path rate (default: 0.1)')

    parser.add_argument('--model-ema', action='store_true')
    parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
    parser.set_defaults(model_ema=True)
    parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
    parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')

    # Optimizer parameters
    parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
                        help='Optimizer (default: "adamw"')
    parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
                        help='Optimizer Epsilon (default: 1e-8)')
    parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
                        help='Optimizer Betas (default: None, use opt default)')
    parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
                        help='Clip gradient norm (default: None, no clipping)')
    parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
                        help='SGD momentum (default: 0.9)')
    parser.add_argument('--weight-decay', type=float, default=0.05,
                        help='weight decay (default: 0.05)')
    # Learning rate schedule parameters
    parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
                        help='LR scheduler (default: "cosine"')
    parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
                        help='learning rate (default: 5e-4)')
    parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
                        help='learning rate noise on/off epoch percentages')
    parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
                        help='learning rate noise limit percent (default: 0.67)')
    parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
                        help='learning rate noise std-dev (default: 1.0)')
    parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
                        help='warmup learning rate (default: 1e-6)')
    parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')

    parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
                        help='epoch interval to decay LR')
    parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
                        help='epochs to warmup LR, if scheduler supports')
    parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
                        help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
    parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
                        help='patience epochs for Plateau LR scheduler (default: 10')
    parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
                        help='LR decay rate (default: 0.1)')

    # Augmentation parameters
    parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT',
                        help='Color jitter factor (default: 0.3)')
    parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
                        help='Use AutoAugment policy. "v0" or "original". " + \
                             "(default: rand-m9-mstd0.5-inc1)'),
    parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
    parser.add_argument('--train-interpolation', type=str, default='bicubic',
                        help='Training interpolation (random, bilinear, bicubic default: "bicubic")')

    parser.add_argument('--repeated-aug', action='store_true')
    parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
    parser.set_defaults(repeated_aug=True)

    parser.add_argument('--train-mode', action='store_true')
    parser.add_argument('--no-train-mode', action='store_false', dest='train_mode')
    parser.set_defaults(train_mode=True)

    parser.add_argument('--ThreeAugment', action='store_true')  # 3augment

    parser.add_argument('--src', action='store_true')  # simple random crop

    # * Random Erase params
    parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
                        help='Random erase prob (default: 0.25)')
    parser.add_argument('--remode', type=str, default='pixel',
                        help='Random erase mode (default: "pixel")')
    parser.add_argument('--recount', type=int, default=1,
                        help='Random erase count (default: 1)')
    parser.add_argument('--resplit', action='store_true', default=False,
                        help='Do not random erase first (clean) augmentation split')

    # * Mixup params
    parser.add_argument('--mixup', type=float, default=0.8,
                        help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
    parser.add_argument('--cutmix', type=float, default=1.0,
                        help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
    parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
                        help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
    parser.add_argument('--mixup-prob', type=float, default=1.0,
                        help='Probability of performing mixup or cutmix when either/both is enabled')
    parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
                        help='Probability of switching to cutmix when both mixup and cutmix enabled')
    parser.add_argument('--mixup-mode', type=str, default='batch',
                        help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')

    # Distillation parameters
    parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
                        help='Name of teacher model to train (default: "regnety_160"')
    parser.add_argument('--teacher-path', type=str, default='')
    parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
    parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
    parser.add_argument('--distillation-tau', default=1.0, type=float, help="")

    # * Finetuning params
    parser.add_argument('--finetune', default='', help='finetune from checkpoint')
    parser.add_argument('--attn-only', action='store_true')

    # Dataset parameters
    parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
                        help='dataset path')
    parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
                        type=str, help='Image Net dataset path')
    parser.add_argument('--inat-category', default='name',
                        choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
                        type=str, help='semantic granularity')

    parser.add_argument('--output_dir', default='',
                        help='path where to save, empty for no saving')
    parser.add_argument('--device', default='cpu',
                        help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
    parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
    parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
    parser.add_argument('--num_workers', default=10, type=int)
    parser.add_argument('--pin-mem', action='store_true',
                        help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
    parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
                        help='')
    parser.set_defaults(pin_mem=True)

    # distributed training parameters
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')

    parser.add_argument('--exp_name', default='deit', type=str, help='experiment name')
    parser.add_argument('--config', default=None, type=str, help='configuration')
    parser.add_argument('--scoring', action='store_true', default=False, help='configuration')
    parser.add_argument('--proxy', default='synflow', type=str, help='configuration')
    parser.add_argument('--snnet_name', default='snnetv2', type=str, help='configuration')
    parser.add_argument('--get_flops', action='store_true')
    parser.add_argument('--flops_sampling_k', default=None, type=float, help="Crop ratio for evaluation")
    parser.add_argument('--low_rank', action='store_true', default=False, help='Enabling distributed evaluation')
    parser.add_argument('--lora_r', default=64, type=int,
                        help='number of distributed processes')
    parser.add_argument('--flops_gap', default=1.0, type=float,
                        help='number of distributed processes')

    return parser


def initialize_model_stitching_layer(model, mixup_fn, data_loader, device):
    for samples, targets in data_loader:
        samples = samples.to(device, non_blocking=True)
        targets = targets.to(device, non_blocking=True)

        if mixup_fn is not None:
            samples, targets = mixup_fn(samples, targets)

        with torch.cuda.amp.autocast():
            model.initialize_stitching_weights(samples)

        break


@torch.no_grad()
def analyse_flops_for_all(model, config_name):
    all_cfgs = model.all_cfgs
    stitch_results = {}

    for cfg_id in all_cfgs:
        model.reset_stitch_id(cfg_id)
        flops = FlopCountAnalysis(model, torch.randn(1, 3, 224, 224).cuda()).total()
        stitch_results[cfg_id] = flops

    save_dir = './model_flops'
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    with open(os.path.join(save_dir, f'flops_{config_name}.json'), 'w+') as f:
        json.dump(stitch_results, f, indent=4)


def main(args):
    utils.init_distributed_mode(args)

    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    logger = get_root_logger(os.path.join(args.output_dir, f'{timestamp}.log'))

    logger.info(str(args))

    if args.distillation_type != 'none' and args.finetune and not args.eval:
        raise NotImplementedError("Finetuning with distillation not yet supported")

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    # random.seed(seed)

    cudnn.benchmark = True

    from datasets import build_transform

    transform = build_transform(False, args)

    anchors = []
    for i, anchor_name in enumerate(args.anchors):
        logger.info(f"Creating model: {anchor_name}")
        anchor = create_model(
            anchor_name,
            pretrained=False,
            pretrained_deit=None,
            num_classes=1000,
            drop_path_rate=args.anchor_drop_path[i],
            img_size=args.input_size
        )
        anchors.append(anchor)

    model = SNNetv2(anchors, lora_r=args.lora_r)

    checkpoint = torch.load(args.resume, map_location='cpu')
    # torch.save({'model': checkpoint['model']}, './snnetv2_deit3_s_l_50ep.pth')

    logger.info(f"load checkpoint from {args.resume}")
    model.load_state_dict(checkpoint['model'])

    model.to(device)

    config_name = args.config.split('/')[-1].split('.')[0]
    model.eval()

    eval_res = {}
    flops_res = {}
    with open('stitches_res_s_l.txt', 'r') as f:
        for line in f.readlines():
            epoch_stat = json.loads(line.strip())
            eval_res[epoch_stat['cfg_id']] = epoch_stat['acc1']
            flops_res[epoch_stat['cfg_id']] = epoch_stat['flops'] / 1e9

    def visualize_stitch_pos(stitch_id):
        if stitch_id == 13:
            # 13 is equivalent to 0
            stitch_id = 0

        names = [f'ID {key}' for key in flops_res.keys()]

        fig = px.scatter(x=flops_res.values(), y=eval_res.values(), hover_name=names)
        fig.update_layout(
            title=f"SN-Netv2 - Stitch ID - {stitch_id}",
            title_x=0.5,
            xaxis_title="GFLOPs",
            yaxis_title="Top-1 Acc (%)",
            font=dict(
                family="Courier New, monospace",
                size=18,
                color="RebeccaPurple"
            ),
            legend=dict(
                yanchor="bottom",
                y=0.99,
                xanchor="left",
                x=0.01),
        )
        # continent, DarkSlateGrey
        fig.update_traces(marker=dict(size=10,
                                      line=dict(width=2)),
                          selector=dict(mode='markers'))

        fig.add_scatter(x=[flops_res[stitch_id]], y=[eval_res[stitch_id]], mode='markers', marker=dict(size=15),
                        name='Current Stitch')
        return fig

    # Download human-readable labels for ImageNet.
    response = requests.get("https://git.io/JJkYN")
    labels = response.text.split("\n")

    def process_image(image, stitch_id):
        # inp = torch.from_numpy(image).permute(2, 0, 1).float()
        inp = transform(image).unsqueeze(0).to(device)
        model.reset_stitch_id(stitch_id)
        with torch.no_grad():
            prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
            confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
        fig = visualize_stitch_pos(stitch_id)
        return confidences, fig

    with gr.Blocks() as main_page:
        with gr.Column():
            gr.HTML("""
                <h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; ">Stitched ViTs are Flexible Vision Backbones</h1>
                <div align="center"> <img align="center" src='file/gradio_banner.png' width="70%"> </div>
                <h3 align="center" >This is the classification demo page of SN-Netv2, a flexible vision backbone that allows for 100+ runtime speed and performance trade-offs. You can also run this gradio demo on your local GPUs at <a href="https://github.com/ziplab/SN-Netv2">https://github.com/ziplab/SN-Netv2</a>, Paper link: <a href="https://arxiv.org/abs/2307.00154">https://arxiv.org/abs/2307.00154</a>.</h3>
                """)
            with gr.Row():
                with gr.Column():
                    image_input = gr.Image(type='pil')
                    stitch_slider = gr.Slider(minimum=0, maximum=134, step=1, label="Stitch ID")
                    with gr.Row():
                        clear_button = gr.ClearButton()
                        submit_button = gr.Button()
                with gr.Column():
                    label_output = gr.Label(num_top_classes=5)
                    stitch_plot = gr.Plot(label='Stitch Position')

        submit_button.click(
            fn=process_image,
            inputs=[image_input, stitch_slider],
            outputs=[label_output, stitch_plot],
        )

        stitch_slider.change(
            fn=visualize_stitch_pos,
            inputs=[stitch_slider],
            outputs=[stitch_plot],
            show_progress=False
        )

        clear_button.click(
            lambda: [None, 0, None, None],
            outputs=[image_input, stitch_slider, label_output, stitch_plot],
        )

        gr.Examples(
            [
                ['demo.jpg', 0],
            ],
            inputs=[
                image_input,
                stitch_slider
            ],
            outputs=[
                label_output,
                stitch_plot
            ],
        )

    main_page.launch(allowed_paths=['./'])


if __name__ == '__main__':
    parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
    args = parser.parse_args()
    setattr(args, 'config', f'gradio_demo.json')
    if args.config is not None:
        config_args = json.load(open(args.config))
        override_keys = {arg[2:].split('=')[0] for arg in sys.argv[1:]
                         if arg.startswith('--')}
        for k, v in config_args.items():
            if k not in override_keys:
                setattr(args, k, v)

    output_dir = os.path.join('outputs', args.exp_name)
    Path(output_dir).mkdir(parents=True, exist_ok=True)
    checkpoint_path = os.path.join(output_dir, 'checkpoint.pth')
    if os.path.exists(checkpoint_path) and not args.resume:
        setattr(args, 'resume', checkpoint_path)

    setattr(args, 'output_dir', output_dir)

    main(args)