Spaces:
Runtime error
Runtime error
File size: 18,801 Bytes
bcfa144 c8ed6d7 bcfa144 62a820e bcfa144 2f9b80c bcfa144 c8ed6d7 bcfa144 c8ed6d7 bcfa144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from utils import get_root_logger
from timm.models import create_model
import models_v2
import requests
import utils
import time
import sys
import datetime
import os
from snnet import SNNet, SNNetv2
import warnings
warnings.filterwarnings("ignore")
from fvcore.nn import FlopCountAnalysis
from PIL import Image
import gradio as gr
import plotly.express as px
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--bce-loss', action='store_true')
parser.add_argument('--unscale-lr', action='store_true')
# Model parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT',
help='Color jitter factor (default: 0.3)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
parser.add_argument('--train-mode', action='store_true')
parser.add_argument('--no-train-mode', action='store_false', dest='train_mode')
parser.set_defaults(train_mode=True)
parser.add_argument('--ThreeAugment', action='store_true') # 3augment
parser.add_argument('--src', action='store_true') # simple random crop
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
help='Name of teacher model to train (default: "regnety_160"')
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--attn-only', action='store_true')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cpu',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--exp_name', default='deit', type=str, help='experiment name')
parser.add_argument('--config', default=None, type=str, help='configuration')
parser.add_argument('--scoring', action='store_true', default=False, help='configuration')
parser.add_argument('--proxy', default='synflow', type=str, help='configuration')
parser.add_argument('--snnet_name', default='snnetv2', type=str, help='configuration')
parser.add_argument('--get_flops', action='store_true')
parser.add_argument('--flops_sampling_k', default=None, type=float, help="Crop ratio for evaluation")
parser.add_argument('--low_rank', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--lora_r', default=64, type=int,
help='number of distributed processes')
parser.add_argument('--flops_gap', default=1.0, type=float,
help='number of distributed processes')
return parser
def initialize_model_stitching_layer(model, mixup_fn, data_loader, device):
for samples, targets in data_loader:
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
model.initialize_stitching_weights(samples)
break
@torch.no_grad()
def analyse_flops_for_all(model, config_name):
all_cfgs = model.all_cfgs
stitch_results = {}
for cfg_id in all_cfgs:
model.reset_stitch_id(cfg_id)
flops = FlopCountAnalysis(model, torch.randn(1, 3, 224, 224).cuda()).total()
stitch_results[cfg_id] = flops
save_dir = './model_flops'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
with open(os.path.join(save_dir, f'flops_{config_name}.json'), 'w+') as f:
json.dump(stitch_results, f, indent=4)
def main(args):
utils.init_distributed_mode(args)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
logger = get_root_logger(os.path.join(args.output_dir, f'{timestamp}.log'))
logger.info(str(args))
if args.distillation_type != 'none' and args.finetune and not args.eval:
raise NotImplementedError("Finetuning with distillation not yet supported")
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
from datasets import build_transform
transform = build_transform(False, args)
anchors = []
for i, anchor_name in enumerate(args.anchors):
logger.info(f"Creating model: {anchor_name}")
anchor = create_model(
anchor_name,
pretrained=False,
pretrained_deit=None,
num_classes=1000,
drop_path_rate=args.anchor_drop_path[i],
img_size=args.input_size
)
anchors.append(anchor)
model = SNNetv2(anchors, lora_r=args.lora_r)
checkpoint = torch.load(args.resume, map_location='cpu')
# torch.save({'model': checkpoint['model']}, './snnetv2_deit3_s_l_50ep.pth')
logger.info(f"load checkpoint from {args.resume}")
model.load_state_dict(checkpoint['model'])
model.to(device)
config_name = args.config.split('/')[-1].split('.')[0]
model.eval()
eval_res = {}
flops_res = {}
with open('stitches_res_s_l.txt', 'r') as f:
for line in f.readlines():
epoch_stat = json.loads(line.strip())
eval_res[epoch_stat['cfg_id']] = epoch_stat['acc1']
flops_res[epoch_stat['cfg_id']] = epoch_stat['flops'] / 1e9
def visualize_stitch_pos(stitch_id):
if stitch_id == 13:
# 13 is equivalent to 0
stitch_id = 0
names = [f'ID {key}' for key in flops_res.keys()]
fig = px.scatter(x=flops_res.values(), y=eval_res.values(), hover_name=names)
fig.update_layout(
title=f"SN-Netv2 - Stitch ID - {stitch_id}",
title_x=0.5,
xaxis_title="GFLOPs",
yaxis_title="Top-1 Acc (%)",
font=dict(
family="Courier New, monospace",
size=18,
color="RebeccaPurple"
),
legend=dict(
yanchor="bottom",
y=0.99,
xanchor="left",
x=0.01),
)
# continent, DarkSlateGrey
fig.update_traces(marker=dict(size=10,
line=dict(width=2)),
selector=dict(mode='markers'))
fig.add_scatter(x=[flops_res[stitch_id]], y=[eval_res[stitch_id]], mode='markers', marker=dict(size=15),
name='Current Stitch')
return fig
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
def process_image(image, stitch_id):
# inp = torch.from_numpy(image).permute(2, 0, 1).float()
inp = transform(image).unsqueeze(0).to(device)
model.reset_stitch_id(stitch_id)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
fig = visualize_stitch_pos(stitch_id)
return confidences, fig
with gr.Blocks() as main_page:
with gr.Column():
gr.HTML("""
<h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; ">Stitched ViTs are Flexible Vision Backbones</h1>
<div align="center"> <img align="center" src='file/gradio_banner.png' width="70%"> </div>
<h3 align="center" >This is the classification demo page of SN-Netv2, a flexible vision backbone that allows for 100+ runtime speed and performance trade-offs. You can also run this gradio demo on your local GPUs at <a href="https://github.com/ziplab/SN-Netv2">https://github.com/ziplab/SN-Netv2</a>, Paper link: <a href="https://arxiv.org/abs/2307.00154">https://arxiv.org/abs/2307.00154</a>.</h3>
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type='pil')
stitch_slider = gr.Slider(minimum=0, maximum=134, step=1, label="Stitch ID")
with gr.Row():
clear_button = gr.ClearButton()
submit_button = gr.Button()
with gr.Column():
label_output = gr.Label(num_top_classes=5)
stitch_plot = gr.Plot(label='Stitch Position')
submit_button.click(
fn=process_image,
inputs=[image_input, stitch_slider],
outputs=[label_output, stitch_plot],
)
stitch_slider.change(
fn=visualize_stitch_pos,
inputs=[stitch_slider],
outputs=[stitch_plot],
show_progress=False
)
clear_button.click(
lambda: [None, 0, None, None],
outputs=[image_input, stitch_slider, label_output, stitch_plot],
)
gr.Examples(
[
['demo.jpg', 0],
],
inputs=[
image_input,
stitch_slider
],
outputs=[
label_output,
stitch_plot
],
)
main_page.launch(allowed_paths=['./'])
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
setattr(args, 'config', f'gradio_demo.json')
if args.config is not None:
config_args = json.load(open(args.config))
override_keys = {arg[2:].split('=')[0] for arg in sys.argv[1:]
if arg.startswith('--')}
for k, v in config_args.items():
if k not in override_keys:
setattr(args, k, v)
output_dir = os.path.join('outputs', args.exp_name)
Path(output_dir).mkdir(parents=True, exist_ok=True)
checkpoint_path = os.path.join(output_dir, 'checkpoint.pth')
if os.path.exists(checkpoint_path) and not args.resume:
setattr(args, 'resume', checkpoint_path)
setattr(args, 'output_dir', output_dir)
main(args)
|