Spaces:
Runtime error
Runtime error
File size: 24,440 Bytes
bcfa144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
import os.path
import torch
import torch.nn as nn
from functools import partial
from timm.models.vision_transformer import Mlp, PatchEmbed , _cfg
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
# from xformers.ops import memory_efficient_attention
class Attention(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# x = memory_efficient_attention(q, k, v).transpose(1, 2).reshape(B, N, C)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,Attention_block = Attention,Mlp_block=Mlp
,init_values=1e-4):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Layer_scale_init_Block(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,Attention_block = Attention,Mlp_block=Mlp
,init_values=1e-4):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
def forward(self, x):
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class Layer_scale_init_Block_paralx2(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,Attention_block = Attention,Mlp_block=Mlp
,init_values=1e-4):
super().__init__()
self.norm1 = norm_layer(dim)
self.norm11 = norm_layer(dim)
self.attn = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.attn1 = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.norm21 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.mlp1 = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_1_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_2_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
def forward(self, x):
x = x + self.drop_path(self.gamma_1*self.attn(self.norm1(x))) + self.drop_path(self.gamma_1_1 * self.attn1(self.norm11(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) + self.drop_path(self.gamma_2_1 * self.mlp1(self.norm21(x)))
return x
class Block_paralx2(nn.Module):
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# with slight modifications
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,Attention_block = Attention,Mlp_block=Mlp
,init_values=1e-4):
super().__init__()
self.norm1 = norm_layer(dim)
self.norm11 = norm_layer(dim)
self.attn = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.attn1 = Attention_block(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.norm21 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.mlp1 = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x))) + self.drop_path(self.attn1(self.norm11(x)))
x = x + self.drop_path(self.mlp(self.norm2(x))) + self.drop_path(self.mlp1(self.norm21(x)))
return x
class hMLP_stem(nn.Module):
""" hMLP_stem: https://arxiv.org/pdf/2203.09795.pdf
taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
with slight modifications
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,norm_layer=nn.SyncBatchNorm):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = torch.nn.Sequential(*[nn.Conv2d(in_chans, embed_dim//4, kernel_size=4, stride=4),
norm_layer(embed_dim//4),
nn.GELU(),
nn.Conv2d(embed_dim//4, embed_dim//4, kernel_size=2, stride=2),
norm_layer(embed_dim//4),
nn.GELU(),
nn.Conv2d(embed_dim//4, embed_dim, kernel_size=2, stride=2),
norm_layer(embed_dim),
])
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class vit_models(nn.Module):
""" Vision Transformer with LayerScale (https://arxiv.org/abs/2103.17239) support
taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
with slight modifications
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, global_pool=None,
block_layers = Block,
Patch_layer=PatchEmbed,act_layer=nn.GELU,
Attention_block = Attention, Mlp_block=Mlp,
dpr_constant=True,init_scale=1e-4,
mlp_ratio_clstk = 4.0):
super().__init__()
self.dropout_rate = drop_rate
self.depth = depth
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim
self.patch_embed = Patch_layer(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
dpr = [drop_path_rate for i in range(depth)]
self.blocks = nn.ModuleList([
block_layers(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=0.0, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
act_layer=act_layer,Attention_block=Attention_block,Mlp_block=Mlp_block,init_values=init_scale)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def get_num_layers(self):
return len(self.blocks)
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def extract_block_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = x + self.pos_embed
x = torch.cat((cls_tokens, x), dim=1)
outs = {}
for i, blk in enumerate(self.blocks):
x = blk(x)
outs[i] = x.detach()
return outs
def selective_forward(self, x, begin, end):
for i, blk in enumerate(self.blocks):
if i < begin:
continue
if i > end:
break
x = blk(x)
return x
def forward_until(self, x, blk_id):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = x + self.pos_embed
x = torch.cat((cls_tokens, x), dim=1)
for i, blk in enumerate(self.blocks):
x = blk(x)
if i == blk_id:
break
return x
def forward_from(self, x, blk_id):
for i, blk in enumerate(self.blocks):
if i < blk_id:
continue
x = blk(x)
x = self.norm(x)
x = self.head(x[:, 0])
return x
def forward_patch_embed(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = x + self.pos_embed
x = torch.cat((cls_tokens, x), dim=1)
return x
def forward_norm_head(self, x):
x = self.norm(x)
x = self.head(x[:, 0])
return x
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = x + self.pos_embed
x = torch.cat((cls_tokens, x), dim=1)
for i , blk in enumerate(self.blocks):
x = blk(x)
x = self.norm(x)
return x[:, 0]
def forward(self, x):
x = self.forward_features(x)
if self.dropout_rate:
x = F.dropout(x, p=float(self.dropout_rate), training=self.training)
x = self.head(x)
return x
# DeiT III: Revenge of the ViT (https://arxiv.org/abs/2204.07118)
@register_model
def deit_tiny_patch16_LS(pretrained=False, img_size=224, pretrained_21k = False, pretrained_cfg_overlay=None, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Layer_scale_init_Block, **kwargs)
return model
@register_model
def deit_small_patch16_LS(pretrained=False, img_size=224, pretrained_21k = False, pretrained_cfg=None, pretrained_deit=None, pretrained_cfg_overlay=None, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Layer_scale_init_Block, **kwargs)
model.default_cfg = _cfg()
if pretrained:
# name = 'https://dl.fbaipublicfiles.com/deit/deit_3_small_'+str(img_size)+'_'
# if pretrained_21k:
# name+='21k.pth'
# else:
# name+='1k.pth'
# checkpoint = torch.hub.load_state_dict_from_url(
# url=name,
# map_location="cpu", check_hash=True
# )
checkpoint = torch.load(os.path.join(pretrained_deit, 'deit_3_small_224_21k.pth'))
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_medium_patch16_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
patch_size=16, embed_dim=512, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers = Layer_scale_init_Block, **kwargs)
model.default_cfg = _cfg()
if pretrained:
name = 'https://dl.fbaipublicfiles.com/deit/deit_3_medium_'+str(img_size)+'_'
if pretrained_21k:
name+='21k.pth'
else:
name+='1k.pth'
checkpoint = torch.hub.load_state_dict_from_url(
url=name,
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_patch16_LS(pretrained=False, pretrained_cfg=None, img_size=224, pretrained_21k = False, pretrained_deit=None, pretrained_cfg_overlay=None, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Layer_scale_init_Block, **kwargs)
if pretrained:
# name = 'https://dl.fbaipublicfiles.com/deit/deit_3_small_'+str(img_size)+'_'
# if pretrained_21k:
# name+='21k.pth'
# else:
# name+='1k.pth'
# checkpoint = torch.hub.load_state_dict_from_url(
# url=name,
# map_location="cpu", check_hash=True
# )
checkpoint = torch.load(os.path.join(pretrained_deit, 'deit_3_base_224_21k.pth'))
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_large_patch16_LS(pretrained=False, img_size=224, pretrained_21k = False, pretrained_cfg=None, pretrained_deit=None, pretrained_cfg_overlay=None, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Layer_scale_init_Block, **kwargs)
if pretrained:
# name = 'https://dl.fbaipublicfiles.com/deit/deit_3_large_'+str(img_size)+'_'
# if pretrained_21k:
# name+='21k.pth'
# else:
# name+='1k.pth'
#
# checkpoint = torch.hub.load_state_dict_from_url(
# url=name,
# map_location="cpu", check_hash=True
# )
checkpoint = torch.load(os.path.join(pretrained_deit, 'deit_3_large_224_21k.pth'))
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_huge_patch14_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers = Layer_scale_init_Block, **kwargs)
if pretrained:
name = 'https://dl.fbaipublicfiles.com/deit/deit_3_huge_'+str(img_size)+'_'
if pretrained_21k:
name+='21k_v1.pth'
else:
name+='1k_v1.pth'
checkpoint = torch.hub.load_state_dict_from_url(
url=name,
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_huge_patch14_52_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=14, embed_dim=1280, depth=52, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers = Layer_scale_init_Block, **kwargs)
return model
@register_model
def deit_huge_patch14_26x2_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=14, embed_dim=1280, depth=26, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers = Layer_scale_init_Block_paralx2, **kwargs)
return model
@register_model
def deit_Giant_48x2_patch14_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=14, embed_dim=1664, depth=48, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers = Block_paral_LS, **kwargs)
return model
@register_model
def deit_giant_40x2_patch14_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers = Block_paral_LS, **kwargs)
return model
@register_model
def deit_Giant_48_patch14_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=14, embed_dim=1664, depth=48, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers = Layer_scale_init_Block, **kwargs)
return model
@register_model
def deit_giant_40_patch14_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers = Layer_scale_init_Block, **kwargs)
#model.default_cfg = _cfg()
return model
# Models from Three things everyone should know about Vision Transformers (https://arxiv.org/pdf/2203.09795.pdf)
@register_model
def deit_small_patch16_36_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=384, depth=36, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Layer_scale_init_Block, **kwargs)
return model
@register_model
def deit_small_patch16_36(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=384, depth=36, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
@register_model
def deit_small_patch16_18x2_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=384, depth=18, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Layer_scale_init_Block_paralx2, **kwargs)
return model
@register_model
def deit_small_patch16_18x2(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=384, depth=18, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Block_paralx2, **kwargs)
return model
@register_model
def deit_base_patch16_18x2_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=768, depth=18, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Layer_scale_init_Block_paralx2, **kwargs)
return model
@register_model
def deit_base_patch16_18x2(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=768, depth=18, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Block_paralx2, **kwargs)
return model
@register_model
def deit_base_patch16_36x1_LS(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=768, depth=36, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),block_layers=Layer_scale_init_Block, **kwargs)
return model
@register_model
def deit_base_patch16_36x1(pretrained=False, img_size=224, pretrained_21k = False, **kwargs):
model = vit_models(
img_size = img_size, patch_size=16, embed_dim=768, depth=36, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
|