Spaces:
Runtime error
Runtime error
Collections: | |
- Name: SegNeXt | |
License: Apache License 2.0 | |
Metadata: | |
Training Data: | |
- ADE20K | |
Paper: | |
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2209.08575 | |
README: configs/segnext/README.md | |
Frameworks: | |
- PyTorch | |
Models: | |
- Name: segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512 | |
In Collection: SegNeXt | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 41.5 | |
mIoU(ms+flip): 42.59 | |
Config: configs/segnext/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- MSCAN-T | |
- SegNeXt | |
Training Resources: 1x A100 GPUS | |
Memory (GB): 17.88 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244-05bd8466.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k/segnext_mscan-t_1x16_512x512_adamw_160k_ade20k_20230210_140244.log.json | |
Paper: | |
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2209.08575 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328 | |
Framework: PyTorch | |
- Name: segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512 | |
In Collection: SegNeXt | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 44.16 | |
mIoU(ms+flip): 45.81 | |
Config: configs/segnext/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- MSCAN-S | |
- SegNeXt | |
Training Resources: 1x A100 GPUS | |
Memory (GB): 21.47 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014-43013668.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k/segnext_mscan-s_1x16_512x512_adamw_160k_ade20k_20230214_113014.log.json | |
Paper: | |
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2209.08575 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328 | |
Framework: PyTorch | |
- Name: segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512 | |
In Collection: SegNeXt | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 48.03 | |
mIoU(ms+flip): 49.68 | |
Config: configs/segnext/segnext_mscan-b_1xb16-adamw-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- MSCAN-B | |
- SegNeXt | |
Training Resources: 1x A100 GPUS | |
Memory (GB): 31.03 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053-b6f6c70c.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k/segnext_mscan-b_1x16_512x512_adamw_160k_ade20k_20230209_172053.log.json | |
Paper: | |
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2209.08575 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328 | |
Framework: PyTorch | |
- Name: segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512 | |
In Collection: SegNeXt | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 50.99 | |
mIoU(ms+flip): 52.1 | |
Config: configs/segnext/segnext_mscan-l_1xb16-adamw-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- MSCAN-L | |
- SegNeXt | |
Training Resources: 1x A100 GPUS | |
Memory (GB): 43.32 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055-19b14b63.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segnext/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k/segnext_mscan-l_1x16_512x512_adamw_160k_ade20k_20230209_172055.log.json | |
Paper: | |
Title: 'SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2209.08575 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/models/backbones/mscan.py#L328 | |
Framework: PyTorch | |