Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,176 Bytes
113884e c9ddddb 113884e c9ddddb 113884e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class MotionEmbedding(nn.Module):
def __init__(self, embed_dim: int = None, max_seq_length: int = 32, wh: int = 1):
super().__init__()
self.embed = nn.Parameter(torch.zeros(wh, max_seq_length, embed_dim))
# print('register spatial motion embedding with', wh)
self.scale = 1.0
self.trained_length = -1
def set_scale(self, scale: float):
self.scale = scale
def set_lengths(self, trained_length: int):
if trained_length > self.embed.shape[1] or trained_length <= 0:
raise ValueError("Trained length is out of bounds")
self.trained_length = trained_length
def forward(self, x):
_, seq_length, _ = x.shape # seq_length here is the target sequence length for x
# print('seq_length',seq_length)
# Assuming self.embed is [batch, frames, dim]
embeddings = self.embed[:, :seq_length] # Initial slice, may not be necessary depending on the interpolation logic
# Check if interpolation is needed
if self.trained_length != -1 and seq_length != self.trained_length:
# Interpolate embeddings to match x's sequence length
# Ensure embeddings is [batch, dim, frames] for 1D interpolation across frames
embeddings = embeddings.permute(0, 2, 1) # Now [batch, dim, frames]
embeddings = F.interpolate(embeddings, size=(seq_length,), mode='linear', align_corners=False)
embeddings = embeddings.permute(0, 2, 1) # Revert to [batch, frames, dim]
# Ensure the interpolated embeddings match the sequence length of x
if embeddings.shape[1] != seq_length:
raise ValueError(f"Interpolated embeddings sequence length {embeddings.shape[1]} does not match x's sequence length {seq_length}")
if x.shape[0] != embeddings.shape[0]:
x = x + embeddings.repeat(x.shape[0]//embeddings.shape[0],1,1) * self.scale
else:
# Now embeddings should have the shape [batch, seq_length, dim] matching x
x = x + embeddings * self.scale # Assuming broadcasting is desired over the batch and dim dimensions
return x
def forward_average(self, x):
_, seq_length, _ = x.shape # seq_length here is the target sequence length for x
# print('seq_length',seq_length)
# Assuming self.embed is [batch, frames, dim]
embeddings = self.embed[:, :seq_length] # Initial slice, may not be necessary depending on the interpolation logic
# Check if interpolation is needed
if self.trained_length != -1 and seq_length != self.trained_length:
# Interpolate embeddings to match x's sequence length
# Ensure embeddings is [batch, dim, frames] for 1D interpolation across frames
embeddings = embeddings.permute(0, 2, 1) # Now [batch, dim, frames]
embeddings = F.interpolate(embeddings, size=(seq_length,), mode='linear', align_corners=False)
embeddings = embeddings.permute(0, 2, 1) # Revert to [batch, frames, dim]
# Ensure the interpolated embeddings match the sequence length of x
if embeddings.shape[1] != seq_length:
raise ValueError(f"Interpolated embeddings sequence length {embeddings.shape[1]} does not match x's sequence length {seq_length}")
embeddings_mean = embeddings.mean(dim=1, keepdim=True)
embeddings = embeddings - embeddings_mean
if x.shape[0] != embeddings.shape[0]:
x = x + embeddings.repeat(x.shape[0]//embeddings.shape[0],1,1) * self.scale
else:
# Now embeddings should have the shape [batch, seq_length, dim] matching x
x = x + embeddings * self.scale # Assuming broadcasting is desired over the batch and dim dimensions
return x
def forward_frameSubtraction(self, x):
_, seq_length, _ = x.shape # seq_length here is the target sequence length for x
# print('seq_length',seq_length)
# Assuming self.embed is [batch, frames, dim]
embeddings = self.embed[:, :seq_length] # Initial slice, may not be necessary depending on the interpolation logic
# Check if interpolation is needed
if self.trained_length != -1 and seq_length != self.trained_length:
# Interpolate embeddings to match x's sequence length
# Ensure embeddings is [batch, dim, frames] for 1D interpolation across frames
embeddings = embeddings.permute(0, 2, 1) # Now [batch, dim, frames]
embeddings = F.interpolate(embeddings, size=(seq_length,), mode='linear', align_corners=False)
embeddings = embeddings.permute(0, 2, 1) # Revert to [batch, frames, dim]
# Ensure the interpolated embeddings match the sequence length of x
if embeddings.shape[1] != seq_length:
raise ValueError(f"Interpolated embeddings sequence length {embeddings.shape[1]} does not match x's sequence length {seq_length}")
embeddings_subtraction = embeddings[:,1:] - embeddings[:,:-1]
embeddings = embeddings.clone().detach()
embeddings[:,1:] = embeddings_subtraction
# first frame minus mean
# embeddings[:,0:1] = embeddings[:,0:1] - embeddings.mean(dim=1, keepdim=True)
if x.shape[0] != embeddings.shape[0]:
x = x + embeddings.repeat(x.shape[0]//embeddings.shape[0],1,1) * self.scale
else:
# Now embeddings should have the shape [batch, seq_length, dim] matching x
x = x + embeddings * self.scale # Assuming broadcasting is desired over the batch and dim dimensions
return x
class MotionEmbeddingSpatial(nn.Module):
def __init__(self, h: int = None, w: int = None, embed_dim: int = None, max_seq_length: int = 32):
super().__init__()
self.embed = nn.Parameter(torch.zeros(h*w, max_seq_length, embed_dim))
self.scale = 1.0
self.trained_length = -1
def set_scale(self, scale: float):
self.scale = scale
def set_lengths(self, trained_length: int):
if trained_length > self.embed.shape[1] or trained_length <= 0:
raise ValueError("Trained length is out of bounds")
self.trained_length = trained_length
def forward(self, x):
_, seq_length, _ = x.shape # seq_length here is the target sequence length for x
# Assuming self.embed is [batch, frames, dim]
embeddings = self.embed[:, :seq_length] # Initial slice, may not be necessary depending on the interpolation logic
# Check if interpolation is needed
if self.trained_length != -1 and seq_length != self.trained_length:
# Interpolate embeddings to match x's sequence length
# Ensure embeddings is [batch, dim, frames] for 1D interpolation across frames
embeddings = embeddings.permute(0, 2, 1) # Now [batch, dim, frames]
embeddings = F.interpolate(embeddings, size=(seq_length,), mode='linear', align_corners=False)
embeddings = embeddings.permute(0, 2, 1) # Revert to [batch, frames, dim]
# Ensure the interpolated embeddings match the sequence length of x
if embeddings.shape[1] != seq_length:
raise ValueError(f"Interpolated embeddings sequence length {embeddings.shape[1]} does not match x's sequence length {seq_length}")
if x.shape[0] != embeddings.shape[0]:
x = x + embeddings.repeat(x.shape[0]//embeddings.shape[0],1,1) * self.scale
else:
# Now embeddings should have the shape [batch, seq_length, dim] matching x
x = x + embeddings * self.scale # Assuming broadcasting is desired over the batch and dim dimensions
return x
def inject_motion_embeddings(model, combinations=None, config=None):
spatial_shape=np.array([config.dataset.height,config.dataset.width])
shape32 = np.ceil(spatial_shape/32).astype(int)
shape16 = np.ceil(spatial_shape/16).astype(int)
spatial_name = 'vSpatial'
replacement_dict = {}
# support for 32 frames
max_seq_length = 32
inject_layers = []
for name, module in model.named_modules():
# check if the module is temp_attention
PETemporal = '.temp_attentions.' in name
if not(PETemporal and re.search(r'transformer_blocks\.\d+$', name)):
continue
if not ([name.split('_')[0], module.norm1.normalized_shape[0]] in combinations):
continue
replacement_dict[f'{name}.pos_embed'] = MotionEmbedding(max_seq_length=max_seq_length, embed_dim=module.norm1.normalized_shape[0]).to(dtype=model.dtype, device=model.device)
replacement_keys = list(set(replacement_dict.keys()))
temp_attn_list = [name.replace('pos_embed','attn1') for name in replacement_keys] + \
[name.replace('pos_embed','attn2') for name in replacement_keys]
embed_dims = [replacement_dict[replacement_keys[i]].embed.shape[2] for i in range(len(replacement_keys))]
for temp_attn_index,temp_attn in enumerate(temp_attn_list):
place_in_net = temp_attn.split('_')[0]
pattern = r'(\d+)\.temp_attentions'
match = re.search(pattern, temp_attn)
place_in_net = temp_attn.split('_')[0]
index_in_net = match.group(1)
h,w = None,None
if place_in_net == 'up':
if index_in_net == "1":
h, w = shape32
elif index_in_net == "2":
h, w = shape16
elif place_in_net == 'down':
if index_in_net == "1":
h, w = shape16
elif index_in_net == "2":
h, w = shape32
replacement_dict[temp_attn+'.'+spatial_name] = \
MotionEmbedding(
wh=h*w,
embed_dim=embed_dims[temp_attn_index%len(replacement_keys)]
).to(dtype=model.dtype, device=model.device)
for name, new_module in replacement_dict.items():
parent_name = name.rsplit('.', 1)[0] if '.' in name else ''
module_name = name.rsplit('.', 1)[-1]
parent_module = model
if parent_name:
parent_module = dict(model.named_modules())[parent_name]
if [parent_name.split('_')[0], new_module.embed.shape[-1]] in combinations:
inject_layers.append(name)
setattr(parent_module, module_name, new_module)
inject_layers = list(set(inject_layers))
# for name in inject_layers:
# print(f"Injecting motion embedding at {name}")
parameters_list = []
for name, para in model.named_parameters():
if 'pos_embed' in name or spatial_name in name:
parameters_list.append(para)
para.requires_grad = True
else:
para.requires_grad = False
return parameters_list, inject_layers
def save_motion_embeddings(model, file_path):
# Extract motion embedding from all instances of MotionEmbedding
motion_embeddings = {
name: module.embed
for name, module in model.named_modules()
if isinstance(module, MotionEmbedding) or isinstance(module, MotionEmbeddingSpatial)
}
# Save the motion embeddings to the specified file path
torch.save(motion_embeddings, file_path)
def load_motion_embeddings(model, saved_embeddings):
for key, embedding in saved_embeddings.items():
# Extract parent module and module name from the key
parent_name = key.rsplit('.', 1)[0] if '.' in key else ''
module_name = key.rsplit('.', 1)[-1]
# Retrieve the parent module
parent_module = model
if parent_name:
parent_module = dict(model.named_modules())[parent_name]
# Create a new MotionEmbedding instance with the correct dimensions
new_module = MotionEmbedding(wh = embedding.shape[0],embed_dim=embedding.shape[-1], max_seq_length=embedding.shape[-2])
# Properly assign the loaded embeddings to the 'embed' parameter wrapped in nn.Parameter
# Ensure the embedding is on the correct device and has the correct dtype
new_module.embed = nn.Parameter(embedding.to(dtype=model.dtype, device=model.device))
# Replace the corresponding module in the model with the new MotionEmbedding instance
setattr(parent_module, module_name, new_module)
def set_motion_embedding_scale(model, scale_value):
# Iterate over all modules in the model
for _, module in model.named_modules():
# Check if the module is an instance of MotionEmbedding
if isinstance(module, MotionEmbedding):
# Set the scale attribute to the specified value
module.scale = scale_value
def set_motion_embedding_length(model, trained_length):
# Iterate over all modules in the model
for _, module in model.named_modules():
# Check if the module is an instance of MotionEmbedding
if isinstance(module, MotionEmbedding):
# Set the length to the specified value
module.trained_length = trained_length
|