import sklearn import gradio as gr import joblib import pandas as pd import datasets import requests import json import dateutil.parser as dp import pandas as pd from huggingface_hub import hf_hub_url, cached_download import time from datetime import datetime def get_row(): response_tomtom = requests.get( 'https://api.tomtom.com/traffic/services/4/flowSegmentData/absolute/10/json?key=azGiX8jKKGxCxdsF1OzvbbWGPDuInWez&point=59.39575,17.98343') json_response_tomtom = json.loads(response_tomtom.text) # get json response currentSpeed = json_response_tomtom["flowSegmentData"]["currentSpeed"] freeFlowSpeed = json_response_tomtom["flowSegmentData"]["freeFlowSpeed"] congestionLevel = currentSpeed/freeFlowSpeed confidence = json_response_tomtom["flowSegmentData"]["confidence"] # Reliability of the traffic data, by percentage # Get weather data from SMHI, updated hourly response_smhi = requests.get( 'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json') json_response_smhi = json.loads(response_smhi.text) # weather data manual https://opendata.smhi.se/apidocs/metanalys/parameters.html#parameter-wsymb # referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp() t = json_response_smhi["timeSeries"][0]["parameters"][0]["values"][0] # Temperature ws = json_response_smhi["timeSeries"][0]["parameters"][4]["values"][0] # Wind Speed prec1h = json_response_smhi["timeSeries"][0]["parameters"][6]["values"][0] # Precipation last hour fesn1h = json_response_smhi["timeSeries"][0]["parameters"][8]["values"][0] # Snow precipation last hour vis = json_response_smhi["timeSeries"][0]["parameters"][9]["values"][0] # Visibility # Use current time referenceTime = datetime.fromtimestamp(time.time()) row ={"referenceTime": referenceTime, "temperature": t, "wind speed": ws, "precipation last hour": prec1h, "snow precipation last hour": fesn1h, "visibility": vis, "confidence of data": confidence} row = pd.DataFrame([row], columns=row.keys()) print(row) row.dropna(axis=0, inplace=True) return row model = joblib.load(cached_download( hf_hub_url("tilos/Traffic_Prediction", "traffic_model.pkl") )) def infer(input_dataframe): serie = input_dataframe["referenceTime"] ts = dp.parse(serie.iloc[0]).timestamp() input_dataframe["referenceTime"] = ts res = pd.DataFrame(model.predict(input_dataframe)).clip(0, 1).iloc[0, 0] if res > 0.8: status = "Smooth Traffic on E4" elif res > 0.5: status = "Slight congestion on E4" else: status = "Total congestion on E4" return pd.DataFrame({'Freeflow Level':[res], 'Status': [status]}) title = "Stoclholm Highway E4 Real Time Traffic Prediction" description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction" # inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), # headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], # # datatype=["timestamp", "float", "float", "float", "float", "float"], # label="Input Data", interactive=1)] # outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): inputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], # datatype=["timestamp", "float", "float", "float", "float", "float"], label="Input Data", interactive=1) with gr.Column(): outputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(2, "fixed"), label="Predictions", headers=["Freeflow Level", "Status"]) with gr.Row(): btn_sub = gr.Button(value="Submit") with gr.Row(): btn_ref = gr.Button(value="Get real-time data") btn_sub.click(infer, inputs = inputs, outputs = outputs) btn_ref.click(get_row, inputs = None, outputs = inputs) #examples = gr.Examples(fn = infer, examples=[get_row()],inputs=inputs,outputs=outputs ,cache_examples=True) examples = gr.Examples(fn = infer, examples=[get_row()] ,inputs=inputs, outputs=outputs, cache_examples=False) # demo.load(get_row, inputs = None, outputs = [inputs], every=10) demo.load(get_row, inputs = None, outputs = [inputs]) # interface = gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=title, description=description, examples=[get_row()], cache_examples=False) # interface.launch() if __name__ == "__main__": demo.queue().launch()