|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import requests |
|
|
|
import hopsworks |
|
import joblib |
|
|
|
project = hopsworks.login(api_key_value="CDqcnm3gyfxjyCO8.TZwOClLOwCqDp33vX0P5Q2nsvNNyEhfBMArwNoPjnb9tUSSKq6I8X35HQ5D2tlJ7") |
|
fs = project.get_feature_store() |
|
|
|
|
|
mr = project.get_model_registry() |
|
model = mr.get_model("titanic_modal", version=1) |
|
model_dir = model.download() |
|
model = joblib.load(model_dir + "/titanic_modal.pkl") |
|
|
|
|
|
def titanic(pclass, sex, age, sibs, par_ch, fare): |
|
input_list = [] |
|
input_list.append(pclass) |
|
input_list.append(sex) |
|
input_list.append(age) |
|
input_list.append(sibs) |
|
input_list.append(par_ch) |
|
input_list.append(fare) |
|
input_list.extend(list(np.random.choice([0,1], 9))) |
|
|
|
res = model.predict(np.asarray(input_list).reshape(1, -1)) |
|
|
|
|
|
man_url = "https://raw.githubusercontent.com/Tilosmsh/IL2223_lab1/main/images/" + ("survived.jpg" if res[0]==1 else "dead.jpg") |
|
img = Image.open(requests.get(man_url, stream=True).raw) |
|
return img |
|
|
|
demo = gr.Interface( |
|
fn=titanic, |
|
title="Titanic Predictive Analytics", |
|
description="Experiment with passenger class, sex, age, number of siblings, number of parents & children and fare, to predict whether the passenger survived.", |
|
allow_flagging="never", |
|
inputs=[ |
|
gr.inputs.Number(default=1, label="Passenger Class (0 (First), 1(Second) or 2(Third))"), |
|
gr.inputs.Number(default=1, label="Sex (0 Female or 1 Male)"), |
|
gr.inputs.Number(default=30.0, label="Age (0 to 80)"), |
|
gr.inputs.Number(default=1, label="Number of Siblings (0 to 8)"), |
|
gr.inputs.Number(default=1, label="Number of Parents and children (0 to 6)"), |
|
gr.inputs.Number(default=35.0, label="Fare (0 to 513)"), |
|
], |
|
outputs=gr.Image(type="pil")) |
|
|
|
demo.launch() |
|
|
|
|