File size: 5,525 Bytes
cd1af34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import onnxruntime
import cv2
import numpy as np
import argparse

# The common resume photo size is 35mmx45mm
RESUME_PHOTO_W = 350
RESUME_PHOTO_H = 450


# modified from https://github.com/opencv/opencv_zoo/blob/main/models/face_detection_yunet/yunet.py
class YuNet:
    def __init__(
        self,
        modelPath,
        inputSize=[320, 320],
        confThreshold=0.6,
        nmsThreshold=0.3,
        topK=5000,
        backendId=0,
        targetId=0,
    ):
        self._modelPath = modelPath
        self._inputSize = tuple(inputSize)  # [w, h]
        self._confThreshold = confThreshold
        self._nmsThreshold = nmsThreshold
        self._topK = topK
        self._backendId = backendId
        self._targetId = targetId

        self._model = cv2.FaceDetectorYN.create(
            model=self._modelPath,
            config="",
            input_size=self._inputSize,
            score_threshold=self._confThreshold,
            nms_threshold=self._nmsThreshold,
            top_k=self._topK,
            backend_id=self._backendId,
            target_id=self._targetId,
        )

    @property
    def name(self):
        return self.__class__.__name__

    def setBackendAndTarget(self, backendId, targetId):
        self._backendId = backendId
        self._targetId = targetId
        self._model = cv2.FaceDetectorYN.create(
            model=self._modelPath,
            config="",
            input_size=self._inputSize,
            score_threshold=self._confThreshold,
            nms_threshold=self._nmsThreshold,
            top_k=self._topK,
            backend_id=self._backendId,
            target_id=self._targetId,
        )

    def setInputSize(self, input_size):
        self._model.setInputSize(tuple(input_size))

    def infer(self, image):
        # Forward
        faces = self._model.detect(image)
        return faces[1]


class ONNXModel:
    def __init__(self, model_path, input_w, input_h):
        self.model = onnxruntime.InferenceSession(model_path)
        self.input_w = input_w
        self.input_h = input_h

    def preprocess(self, rgb, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
        # convert the input data into the float32 input
        img_data = (
            np.array(cv2.resize(rgb, (self.input_w, self.input_h)))
            .transpose(2, 0, 1)
            .astype("float32")
        )

        # normalize
        norm_img_data = np.zeros(img_data.shape).astype("float32")

        for i in range(img_data.shape[0]):
            norm_img_data[i, :, :] = img_data[i, :, :] / 255
            norm_img_data[i, :, :] = (norm_img_data[i, :, :] - mean[i]) / std[i]

        # add batch channel
        norm_img_data = norm_img_data.reshape(1, 3, self.input_h, self.input_w).astype(
            "float32"
        )
        return norm_img_data

    def forward(self, image):
        input_data = self.preprocess(image)
        output_data = self.model.run(["argmax_0.tmp_0"], {"x": input_data})

        return output_data


def parse_args():
    parser = argparse.ArgumentParser(description="Resume Photo Maker")
    parser.add_argument(
        "--background_color",
        "-bg",
        nargs="+",
        type=int,
        default=(255, 255, 255),
        help="Set the background color RGB values.",
    )
    parser.add_argument(
        "--image", "-i", type=str, default="images/elon.jpg", help="Input image path."
    )

    args = parser.parse_args()

    return args


if __name__ == "__main__":
    args = parse_args()

    bgr = cv2.imread(args.image)
    h, w, _ = bgr.shape

    # Initialize models
    face_detector = YuNet("models/face_detection_yunet_2023mar.onnx")
    face_detector.setInputSize([w, h])
    human_segmentor = ONNXModel(
        "models/human_pp_humansegv2_lite_192x192_inference_model.onnx", 192, 192
    )

    # yunet uses opencv bgr image format
    detections = face_detector.infer(bgr)

    for idx, det in enumerate(detections):
        # bounding box
        pt1 = np.array((det[0], det[1]))
        pt2 = np.array((det[0] + det[2], det[1] + det[3]))

        # face landmarks
        landmarks = det[4:14].reshape((5, 2))
        right_eye = landmarks[0]
        left_eye = landmarks[1]

        angle = np.arctan2(right_eye[1] - left_eye[1], (right_eye[0] - left_eye[0]))
        rmat = cv2.getRotationMatrix2D((0, 0), -angle, 1)

        # apply rotation
        rotated_bgr = cv2.warpAffine(bgr, rmat, (bgr.shape[1], bgr.shape[0]))
        rotated_pt1 = rmat[:, :-1] @ pt1
        rotated_pt2 = rmat[:, :-1] @ pt2

        face_w, face_h = rotated_pt2 - rotated_pt1
        up_length = int(face_h / 4)
        down_length = int(face_h / 3)
        crop_h = face_h + up_length + down_length
        crop_w = int(crop_h * (RESUME_PHOTO_W / RESUME_PHOTO_H))

        pt1 = np.array(
            (rotated_pt1[0] - (crop_w - face_w) / 2, rotated_pt1[1] - up_length)
        ).astype(np.int32)
        pt2 = np.array((pt1[0] + crop_w, pt1[1] + crop_h)).astype(np.int32)

        resume_photo = rotated_bgr[pt1[1] : pt2[1], pt1[0] : pt2[0], :]

        rgb = cv2.cvtColor(resume_photo, cv2.COLOR_BGR2RGB)
        mask = human_segmentor.forward(rgb)
        mask = mask[0].transpose(1, 2, 0)
        mask = cv2.resize(
            mask.astype(np.uint8), (resume_photo.shape[1], resume_photo.shape[0])
        )

        resume_photo[mask == 0] = args.background_color

        resume_photo = cv2.resize(resume_photo, (RESUME_PHOTO_W, RESUME_PHOTO_H))
        cv2.imwrite(f"masked_resume_photo_{idx}.jpg", resume_photo)