Spaces:
Configuration error
Configuration error
File size: 5,525 Bytes
cd1af34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import onnxruntime
import cv2
import numpy as np
import argparse
# The common resume photo size is 35mmx45mm
RESUME_PHOTO_W = 350
RESUME_PHOTO_H = 450
# modified from https://github.com/opencv/opencv_zoo/blob/main/models/face_detection_yunet/yunet.py
class YuNet:
def __init__(
self,
modelPath,
inputSize=[320, 320],
confThreshold=0.6,
nmsThreshold=0.3,
topK=5000,
backendId=0,
targetId=0,
):
self._modelPath = modelPath
self._inputSize = tuple(inputSize) # [w, h]
self._confThreshold = confThreshold
self._nmsThreshold = nmsThreshold
self._topK = topK
self._backendId = backendId
self._targetId = targetId
self._model = cv2.FaceDetectorYN.create(
model=self._modelPath,
config="",
input_size=self._inputSize,
score_threshold=self._confThreshold,
nms_threshold=self._nmsThreshold,
top_k=self._topK,
backend_id=self._backendId,
target_id=self._targetId,
)
@property
def name(self):
return self.__class__.__name__
def setBackendAndTarget(self, backendId, targetId):
self._backendId = backendId
self._targetId = targetId
self._model = cv2.FaceDetectorYN.create(
model=self._modelPath,
config="",
input_size=self._inputSize,
score_threshold=self._confThreshold,
nms_threshold=self._nmsThreshold,
top_k=self._topK,
backend_id=self._backendId,
target_id=self._targetId,
)
def setInputSize(self, input_size):
self._model.setInputSize(tuple(input_size))
def infer(self, image):
# Forward
faces = self._model.detect(image)
return faces[1]
class ONNXModel:
def __init__(self, model_path, input_w, input_h):
self.model = onnxruntime.InferenceSession(model_path)
self.input_w = input_w
self.input_h = input_h
def preprocess(self, rgb, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
# convert the input data into the float32 input
img_data = (
np.array(cv2.resize(rgb, (self.input_w, self.input_h)))
.transpose(2, 0, 1)
.astype("float32")
)
# normalize
norm_img_data = np.zeros(img_data.shape).astype("float32")
for i in range(img_data.shape[0]):
norm_img_data[i, :, :] = img_data[i, :, :] / 255
norm_img_data[i, :, :] = (norm_img_data[i, :, :] - mean[i]) / std[i]
# add batch channel
norm_img_data = norm_img_data.reshape(1, 3, self.input_h, self.input_w).astype(
"float32"
)
return norm_img_data
def forward(self, image):
input_data = self.preprocess(image)
output_data = self.model.run(["argmax_0.tmp_0"], {"x": input_data})
return output_data
def parse_args():
parser = argparse.ArgumentParser(description="Resume Photo Maker")
parser.add_argument(
"--background_color",
"-bg",
nargs="+",
type=int,
default=(255, 255, 255),
help="Set the background color RGB values.",
)
parser.add_argument(
"--image", "-i", type=str, default="images/elon.jpg", help="Input image path."
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
bgr = cv2.imread(args.image)
h, w, _ = bgr.shape
# Initialize models
face_detector = YuNet("models/face_detection_yunet_2023mar.onnx")
face_detector.setInputSize([w, h])
human_segmentor = ONNXModel(
"models/human_pp_humansegv2_lite_192x192_inference_model.onnx", 192, 192
)
# yunet uses opencv bgr image format
detections = face_detector.infer(bgr)
for idx, det in enumerate(detections):
# bounding box
pt1 = np.array((det[0], det[1]))
pt2 = np.array((det[0] + det[2], det[1] + det[3]))
# face landmarks
landmarks = det[4:14].reshape((5, 2))
right_eye = landmarks[0]
left_eye = landmarks[1]
angle = np.arctan2(right_eye[1] - left_eye[1], (right_eye[0] - left_eye[0]))
rmat = cv2.getRotationMatrix2D((0, 0), -angle, 1)
# apply rotation
rotated_bgr = cv2.warpAffine(bgr, rmat, (bgr.shape[1], bgr.shape[0]))
rotated_pt1 = rmat[:, :-1] @ pt1
rotated_pt2 = rmat[:, :-1] @ pt2
face_w, face_h = rotated_pt2 - rotated_pt1
up_length = int(face_h / 4)
down_length = int(face_h / 3)
crop_h = face_h + up_length + down_length
crop_w = int(crop_h * (RESUME_PHOTO_W / RESUME_PHOTO_H))
pt1 = np.array(
(rotated_pt1[0] - (crop_w - face_w) / 2, rotated_pt1[1] - up_length)
).astype(np.int32)
pt2 = np.array((pt1[0] + crop_w, pt1[1] + crop_h)).astype(np.int32)
resume_photo = rotated_bgr[pt1[1] : pt2[1], pt1[0] : pt2[0], :]
rgb = cv2.cvtColor(resume_photo, cv2.COLOR_BGR2RGB)
mask = human_segmentor.forward(rgb)
mask = mask[0].transpose(1, 2, 0)
mask = cv2.resize(
mask.astype(np.uint8), (resume_photo.shape[1], resume_photo.shape[0])
)
resume_photo[mask == 0] = args.background_color
resume_photo = cv2.resize(resume_photo, (RESUME_PHOTO_W, RESUME_PHOTO_H))
cv2.imwrite(f"masked_resume_photo_{idx}.jpg", resume_photo)
|