Spaces:
Runtime error
Runtime error
File size: 15,856 Bytes
8bbef17 b657107 8bbef17 beca6a7 8705301 8bbef17 8705301 8bbef17 cc38132 8bbef17 8705301 8bbef17 6e1a1ed b657107 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 a0642c1 8bbef17 8705301 cc38132 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 a0642c1 8bbef17 8705301 cc38132 8bbef17 cc38132 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 8705301 8bbef17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import os
os.system("python -m spacy download en_core_web_sm")
import io
import base64
import streamlit as st
import numpy as np
import fitz # PyMuPDF
import tempfile
from ultralytics import YOLO
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from langchain_core.output_parsers import StrOutputParser
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_text_splitters import SpacyTextSplitter
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
import re
from PIL import Image
from streamlit_chat import message
# Load the trained model
model = YOLO("best.pt")
openai_api_key = os.environ.get("openai_api_key")
# Define the class indices for figures, tables, and text
figure_class_index = 4
table_class_index = 3
# Utility functions
def clean_text(text):
return re.sub(r'\s+', ' ', text).strip()
def remove_references(text):
reference_patterns = [
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b', r'\bCitations\b',
r'\bWorks Cited\b', r'\bReference\b', r'\breference\b'
]
lines = text.split('\n')
for i, line in enumerate(lines):
if any(re.search(pattern, line, re.IGNORECASE) for pattern in reference_patterns):
return '\n'.join(lines[:i])
return text
def save_uploaded_file(uploaded_file):
temp_file = tempfile.NamedTemporaryFile(delete=False)
temp_file.write(uploaded_file.getbuffer())
temp_file.close()
return temp_file.name
def summarize_pdf(pdf_file_path, num_clusters=10):
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
llm = ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key, temperature=0.3)
prompt = ChatPromptTemplate.from_template(
"""Could you please provide a concise and comprehensive summary of the given Contexts?
The summary should capture the main points and key details of the text while conveying the author's intended meaning accurately.
Please ensure that the summary is well-organized and easy to read, with clear headings and subheadings to guide the reader through each section.
The length of the summary should be appropriate to capture the main points and key details of the text, without including unnecessary information or becoming overly long.
example of summary:
## Summary:
## Key points:
Contexts: {topic}"""
)
output_parser = StrOutputParser()
chain = prompt | llm | output_parser
loader = PyMuPDFLoader(pdf_file_path)
docs = loader.load()
full_text = "\n".join(doc.page_content for doc in docs)
cleaned_full_text = clean_text(remove_references(full_text))
text_splitter = SpacyTextSplitter(chunk_size=500)
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
split_contents = text_splitter.split_text(cleaned_full_text)
embeddings = embeddings_model.embed_documents(split_contents)
kmeans = KMeans(n_clusters=num_clusters, init='k-means++', random_state=0).fit(embeddings)
closest_point_indices = [np.argmin(np.linalg.norm(embeddings - center, axis=1)) for center in kmeans.cluster_centers_]
extracted_contents = [split_contents[idx] for idx in closest_point_indices]
results = chain.invoke({"topic": ' '.join(extracted_contents)})
return generate_citations(results, extracted_contents)
def qa_pdf(pdf_file_path, query, num_clusters=5, similarity_threshold=0.6):
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
llm = ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key, temperature=0.3)
prompt = ChatPromptTemplate.from_template(
"""Please provide a detailed and accurate answer to the given question based on the provided contexts.
Ensure that the answer is comprehensive and directly addresses the query.
If necessary, include relevant examples or details from the text.
Question: {question}
Contexts: {contexts}"""
)
output_parser = StrOutputParser()
chain = prompt | llm | output_parser
loader = PyMuPDFLoader(pdf_file_path)
docs = loader.load()
full_text = "\n".join(doc.page_content for doc in docs)
cleaned_full_text = clean_text(remove_references(full_text))
text_splitter = SpacyTextSplitter(chunk_size=500)
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
split_contents = text_splitter.split_text(cleaned_full_text)
embeddings = embeddings_model.embed_documents(split_contents)
query_embedding = embeddings_model.embed_query(query)
similarity_scores = cosine_similarity([query_embedding], embeddings)[0]
top_indices = np.argsort(similarity_scores)[-num_clusters:]
relevant_contents = [split_contents[i] for i in top_indices]
results = chain.invoke({"question": query, "contexts": ' '.join(relevant_contents)})
return generate_citations(results, relevant_contents, similarity_threshold)
def generate_citations(text, contents, similarity_threshold=0.6):
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
text_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
text_embeddings = embeddings_model.embed_documents(text_sentences)
content_embeddings = embeddings_model.embed_documents(contents)
similarity_matrix = cosine_similarity(text_embeddings, content_embeddings)
cited_text = text
relevant_sources = []
source_mapping = {}
sentence_to_source = {}
for i, sentence in enumerate(text_sentences):
if sentence in sentence_to_source:
continue
max_similarity = max(similarity_matrix[i])
if max_similarity >= similarity_threshold:
most_similar_idx = np.argmax(similarity_matrix[i])
if most_similar_idx not in source_mapping:
source_mapping[most_similar_idx] = len(relevant_sources) + 1
relevant_sources.append((most_similar_idx, contents[most_similar_idx]))
citation_idx = source_mapping[most_similar_idx]
citation = f"([Source {citation_idx}](#source-{citation_idx}))"
cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
sentence_to_source[sentence] = citation_idx
cited_text = cited_text.replace(sentence, cited_sentence)
sources_list = "\n\n## Sources:\n"
for idx, (original_idx, content) in enumerate(relevant_sources):
sources_list += f"""
<details style="margin: 1px 0; padding: 5px; border: 1px solid #ccc; border-radius: 8px; background-color: #f9f9f9; transition: all 0.3s ease;">
<summary style="font-weight: bold; cursor: pointer; outline: none; padding: 5px 0; transition: color 0.3s ease;">Source {idx + 1}</summary>
<pre style="white-space: pre-wrap; word-wrap: break-word; margin: 1px 0; padding: 10px; background-color: #fff; border-radius: 5px; border: 1px solid #ddd; box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);">{content}</pre>
</details>
"""
# Add dummy blanks after the last source
dummy_blanks = """
<div style="margin: 20px 0;"></div>
<div style="margin: 20px 0;"></div>
<div style="margin: 20px 0;"></div>
<div style="margin: 20px 0;"></div>
<div style="margin: 20px 0;"></div>
"""
cited_text += sources_list + dummy_blanks
return cited_text
def infer_image_and_get_boxes(image, confidence_threshold=0.8):
results = model.predict(image)
return [
(int(box.xyxy[0][0]), int(box.xyxy[0][1]), int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
for result in results for box in result.boxes
if int(box.cls[0]) in {figure_class_index, table_class_index} and box.conf[0] > confidence_threshold
]
def crop_images_from_boxes(image, boxes, scale_factor):
figures = []
tables = []
for (x1, y1, x2, y2, cls) in boxes:
cropped_img = image[int(y1 * scale_factor):int(y2 * scale_factor), int(x1 * scale_factor):int(x2 * scale_factor)]
if cls == figure_class_index:
figures.append(cropped_img)
elif cls == table_class_index:
tables.append(cropped_img)
return figures, tables
def process_pdf(pdf_file_path):
doc = fitz.open(pdf_file_path)
all_figures = []
all_tables = []
low_dpi = 50
high_dpi = 300
scale_factor = high_dpi / low_dpi
low_res_pixmaps = [page.get_pixmap(dpi=low_dpi) for page in doc]
for page_num, low_res_pix in enumerate(low_res_pixmaps):
low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3)
boxes = infer_image_and_get_boxes(low_res_img)
if boxes:
high_res_pix = doc[page_num].get_pixmap(dpi=high_dpi)
high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3)
figures, tables = crop_images_from_boxes(high_res_img, boxes, scale_factor)
all_figures.extend(figures)
all_tables.extend(tables)
return all_figures, all_tables
def image_to_base64(img):
buffered = io.BytesIO()
img = Image.fromarray(img)
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def on_btn_click():
del st.session_state.chat_history[:]
# Streamlit interface
# Custom CSS for the file uploader
uploadercss='''
<style>
[data-testid='stFileUploader'] {
width: max-content;
}
[data-testid='stFileUploader'] section {
padding: 0;
float: left;
}
[data-testid='stFileUploader'] section > input + div {
display: none;
}
[data-testid='stFileUploader'] section + div {
float: right;
padding-top: 0;
}
</style>
'''
st.set_page_config(page_title="PDF Reading Assistant", page_icon="π")
# Initialize chat history in session state if not already present
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
st.title("π PDF Reading Assistant")
st.markdown("### Extract tables, figures, summaries, and answers from your PDF files easily.")
chat_placeholder = st.empty()
# File uploader for PDF
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
st.markdown(uploadercss, unsafe_allow_html=True)
if uploaded_file:
file_path = save_uploaded_file(uploaded_file)
# Chat container where all messages will be displayed
chat_container = st.container()
user_input = st.chat_input("Ask a question about the pdf......", key="user_input")
with chat_container:
# Scrollable chat messages
for idx, chat in enumerate(st.session_state.chat_history):
if chat.get("user"):
message(chat["user"], is_user=True, allow_html=True, key=f"user_{idx}", avatar_style="initials", seed="user")
if chat.get("bot"):
message(chat["bot"], is_user=False, allow_html=True, key=f"bot_{idx}",seed="bot")
# Input area and buttons for user interaction
with st.form(key="chat_form", clear_on_submit=True,border=False):
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
summary_button = st.form_submit_button("Generate Summary")
with col2:
extract_button = st.form_submit_button("Extract Tables and Figures")
with col3:
st.form_submit_button("Clear message", on_click=on_btn_click)
# Handle responses based on user input and button presses
if summary_button:
with st.spinner("Generating summary..."):
summary = summarize_pdf(file_path)
st.session_state.chat_history.append({"user": "Generate Summary", "bot": summary})
st.rerun()
if extract_button:
with st.spinner("Extracting tables and figures..."):
figures, tables = process_pdf(file_path)
if figures:
st.session_state.chat_history.append({"user": "Figures"})
for idx, figure in enumerate(figures):
figure_base64 = image_to_base64(figure)
result_html = f'<img src="data:image/png;base64,{figure_base64}" style="width:100%; display:block;" alt="Figure {idx+1}"/>'
st.session_state.chat_history.append({"bot": f"Figure {idx+1} {result_html}"})
if tables:
st.session_state.chat_history.append({"user": "Tables"})
for idx, table in enumerate(tables):
table_base64 = image_to_base64(table)
result_html = f'<img src="data:image/png;base64,{table_base64}" style="width:100%; display:block;" alt="Table {idx+1}"/>'
st.session_state.chat_history.append({"bot": f"Table {idx+1} {result_html}"})
st.rerun()
if user_input:
st.session_state.chat_history.append({"user": user_input, "bot": None})
with st.spinner("Processing..."):
answer = qa_pdf(file_path, user_input)
st.session_state.chat_history[-1]["bot"] = answer
st.rerun()
# Additional CSS and JavaScript to ensure the chat container is scrollable and scrolls to the bottom
st.markdown("""
<style>
#chat-container {
max-height: 500px;
overflow-y: auto;
padding: 1rem;
border: 1px solid #ddd;
border-radius: 8px;
background-color: #fefefe;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
transition: background-color 0.3s ease;
}
#chat-container:hover {
background-color: #f9f9f9;
}
.stChatMessage {
padding: 0.75rem;
margin: 0.75rem 0;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
transition: background-color 0.3s ease;
}
.stChatMessage--user {
background-color: #E3F2FD;
}
.stChatMessage--user:hover {
background-color: #BBDEFB;
}
.stChatMessage--bot {
background-color: #EDE7F6;
}
.stChatMessage--bot:hover {
background-color: #D1C4E9;
}
textarea {
width: 100%;
padding: 1rem;
border: 1px solid #ddd;
border-radius: 8px;
box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.1);
transition: border-color 0.3s ease, box-shadow 0.3s ease;
}
textarea:focus {
border-color: #4CAF50;
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5);
}
.stButton > button {
width: 100%;
background-color: #4CAF50;
color: white;
border: none;
border-radius: 8px;
padding: 0.75rem;
font-size: 16px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
transition: background-color 0.3s ease, box-shadow 0.3s ease;
}
.stButton > button:hover {
background-color: #45A049;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
</style>
<script>
const chatContainer = document.getElementById('chat-container');
chatContainer.scrollTop = chatContainer.scrollHeight;
</script>
""", unsafe_allow_html=True)
|