Upload stapp.py
Browse files
stapp.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import numpy as np
|
| 7 |
+
import fitz # PyMuPDF
|
| 8 |
+
from ultralytics import YOLO
|
| 9 |
+
from sklearn.cluster import KMeans
|
| 10 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 11 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 12 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
| 13 |
+
from langchain_openai import OpenAIEmbeddings
|
| 14 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 15 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 16 |
+
from sklearn.decomposition import PCA
|
| 17 |
+
from langchain_openai import ChatOpenAI
|
| 18 |
+
import string
|
| 19 |
+
import re
|
| 20 |
+
from termcolor import colored
|
| 21 |
+
|
| 22 |
+
# Load the trained model
|
| 23 |
+
model = YOLO("runs\\detect\\train7\\weights\\best.pt")
|
| 24 |
+
openai_api_key = os.environ.get("openai_api_key")
|
| 25 |
+
|
| 26 |
+
# Define the class indices for figures, tables, and text
|
| 27 |
+
figure_class_index = 4 # class index for figures
|
| 28 |
+
table_class_index = 3 # class index for tables
|
| 29 |
+
|
| 30 |
+
# Global variables to store embeddings and contents
|
| 31 |
+
global_embeddings = None
|
| 32 |
+
global_split_contents = None
|
| 33 |
+
|
| 34 |
+
def clean_text(text):
|
| 35 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 36 |
+
return text
|
| 37 |
+
|
| 38 |
+
def remove_references(text):
|
| 39 |
+
reference_patterns = [
|
| 40 |
+
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b', r'\bCitations\b',
|
| 41 |
+
r'\bWorks Cited\b', r'\bReference\b', r'\breference\b'
|
| 42 |
+
]
|
| 43 |
+
lines = text.split('\n')
|
| 44 |
+
for i, line in enumerate(lines):
|
| 45 |
+
if any(re.search(pattern, line, re.IGNORECASE) for pattern in reference_patterns):
|
| 46 |
+
return '\n'.join(lines[:i])
|
| 47 |
+
return text
|
| 48 |
+
|
| 49 |
+
def save_uploaded_file(uploaded_file):
|
| 50 |
+
with open(uploaded_file.name, 'wb') as f:
|
| 51 |
+
f.write(uploaded_file.getbuffer())
|
| 52 |
+
return uploaded_file.name
|
| 53 |
+
|
| 54 |
+
def summarize_pdf(pdf_file_path, num_clusters=10):
|
| 55 |
+
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
| 56 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
|
| 57 |
+
prompt = ChatPromptTemplate.from_template(
|
| 58 |
+
"""Could you please provide a concise and comprehensive summary of the given Contexts?
|
| 59 |
+
The summary should capture the main points and key details of the text while conveying the author's intended meaning accurately.
|
| 60 |
+
Please ensure that the summary is well-organized and easy to read, with clear headings and subheadings to guide the reader through each section.
|
| 61 |
+
The length of the summary should be appropriate to capture the main points and key details of the text, without including unnecessary information or becoming overly long.
|
| 62 |
+
example of summary:
|
| 63 |
+
## Summary:
|
| 64 |
+
## Key points:
|
| 65 |
+
Contexts: {topic}"""
|
| 66 |
+
)
|
| 67 |
+
output_parser = StrOutputParser()
|
| 68 |
+
chain = prompt | llm | output_parser
|
| 69 |
+
|
| 70 |
+
loader = PyMuPDFLoader(pdf_file_path)
|
| 71 |
+
docs = loader.load()
|
| 72 |
+
full_text = "\n".join(doc.page_content for doc in docs)
|
| 73 |
+
cleaned_full_text = remove_references(full_text)
|
| 74 |
+
cleaned_full_text = clean_text(cleaned_full_text)
|
| 75 |
+
|
| 76 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0,separators=["\n\n", "\n",".", " "])
|
| 77 |
+
split_contents = text_splitter.split_text(cleaned_full_text)
|
| 78 |
+
embeddings = embeddings_model.embed_documents(split_contents)
|
| 79 |
+
|
| 80 |
+
X = np.array(embeddings)
|
| 81 |
+
kmeans = KMeans(n_clusters=num_clusters, init='k-means++', random_state=0).fit(embeddings)
|
| 82 |
+
cluster_centers = kmeans.cluster_centers_
|
| 83 |
+
|
| 84 |
+
closest_point_indices = []
|
| 85 |
+
for center in cluster_centers:
|
| 86 |
+
distances = np.linalg.norm(embeddings - center, axis=1)
|
| 87 |
+
closest_point_indices.append(np.argmin(distances))
|
| 88 |
+
|
| 89 |
+
extracted_contents = [split_contents[idx] for idx in closest_point_indices]
|
| 90 |
+
results = chain.invoke({"topic": ' '.join(extracted_contents)})
|
| 91 |
+
|
| 92 |
+
summary_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', results)
|
| 93 |
+
summary_embeddings = embeddings_model.embed_documents(summary_sentences)
|
| 94 |
+
extracted_embeddings = embeddings_model.embed_documents(extracted_contents)
|
| 95 |
+
similarity_matrix = cosine_similarity(summary_embeddings, extracted_embeddings)
|
| 96 |
+
|
| 97 |
+
cited_results = results
|
| 98 |
+
relevant_sources = []
|
| 99 |
+
source_mapping = {}
|
| 100 |
+
sentence_to_source = {}
|
| 101 |
+
similarity_threshold = 0.6
|
| 102 |
+
|
| 103 |
+
for i, sentence in enumerate(summary_sentences):
|
| 104 |
+
if sentence in sentence_to_source:
|
| 105 |
+
continue
|
| 106 |
+
max_similarity = max(similarity_matrix[i])
|
| 107 |
+
if max_similarity >= similarity_threshold:
|
| 108 |
+
most_similar_idx = np.argmax(similarity_matrix[i])
|
| 109 |
+
if most_similar_idx not in source_mapping:
|
| 110 |
+
source_mapping[most_similar_idx] = len(relevant_sources) + 1
|
| 111 |
+
relevant_sources.append((most_similar_idx, extracted_contents[most_similar_idx]))
|
| 112 |
+
citation_idx = source_mapping[most_similar_idx]
|
| 113 |
+
citation = f"([Source {citation_idx}](#source-{citation_idx}))"
|
| 114 |
+
cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
|
| 115 |
+
sentence_to_source[sentence] = citation_idx
|
| 116 |
+
cited_results = cited_results.replace(sentence, cited_sentence)
|
| 117 |
+
|
| 118 |
+
sources_list = "\n\n## Sources:\n"
|
| 119 |
+
for idx, (original_idx, content) in enumerate(relevant_sources):
|
| 120 |
+
sources_list += f"""
|
| 121 |
+
<details style="margin: 10px 0; padding: 10px; border: 1px solid #ccc; border-radius: 5px; background-color: #f9f9f9;">
|
| 122 |
+
<summary style="font-weight: bold; cursor: pointer;">Source {idx + 1}</summary>
|
| 123 |
+
<pre style="white-space: pre-wrap; word-wrap: break-word; margin-top: 10px;">{content}</pre>
|
| 124 |
+
</details>
|
| 125 |
+
"""
|
| 126 |
+
cited_results += sources_list
|
| 127 |
+
return cited_results
|
| 128 |
+
|
| 129 |
+
def qa_pdf(pdf_file_path, query, num_clusters=5, similarity_threshold=0.6):
|
| 130 |
+
global global_embeddings, global_split_contents
|
| 131 |
+
|
| 132 |
+
# Initialize models and embeddings
|
| 133 |
+
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key)
|
| 134 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key, temperature=0.3)
|
| 135 |
+
prompt = ChatPromptTemplate.from_template(
|
| 136 |
+
"""Please provide a detailed and accurate answer to the given question based on the provided contexts.
|
| 137 |
+
Ensure that the answer is comprehensive and directly addresses the query.
|
| 138 |
+
If necessary, include relevant examples or details from the text.
|
| 139 |
+
Question: {question}
|
| 140 |
+
Contexts: {contexts}"""
|
| 141 |
+
)
|
| 142 |
+
output_parser = StrOutputParser()
|
| 143 |
+
chain = prompt | llm | output_parser
|
| 144 |
+
|
| 145 |
+
# Load and process the PDF if not already loaded
|
| 146 |
+
if global_embeddings is None or global_split_contents is None:
|
| 147 |
+
loader = PyMuPDFLoader(pdf_file_path)
|
| 148 |
+
docs = loader.load()
|
| 149 |
+
full_text = "\n".join(doc.page_content for doc in docs)
|
| 150 |
+
cleaned_full_text = remove_references(full_text)
|
| 151 |
+
cleaned_full_text = clean_text(cleaned_full_text)
|
| 152 |
+
|
| 153 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=0, separators=["\n\n", "\n", ".", " "])
|
| 154 |
+
global_split_contents = text_splitter.split_text(cleaned_full_text)
|
| 155 |
+
global_embeddings = embeddings_model.embed_documents(global_split_contents)
|
| 156 |
+
|
| 157 |
+
# Embed the query and find the most relevant contexts
|
| 158 |
+
query_embedding = embeddings_model.embed_query(query)
|
| 159 |
+
similarity_scores = cosine_similarity([query_embedding], global_embeddings)[0]
|
| 160 |
+
top_indices = np.argsort(similarity_scores)[-num_clusters:]
|
| 161 |
+
relevant_contents = [global_split_contents[i] for i in top_indices]
|
| 162 |
+
|
| 163 |
+
# Generate the answer using the LLM chain
|
| 164 |
+
results = chain.invoke({"question": query, "contexts": ' '.join(relevant_contents)})
|
| 165 |
+
|
| 166 |
+
# Split the answer into sentences and embed them
|
| 167 |
+
answer_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', results)
|
| 168 |
+
answer_embeddings = embeddings_model.embed_documents(answer_sentences)
|
| 169 |
+
relevant_embeddings = embeddings_model.embed_documents(relevant_contents)
|
| 170 |
+
similarity_matrix = cosine_similarity(answer_embeddings, relevant_embeddings)
|
| 171 |
+
|
| 172 |
+
# Map sentences to sources and create citations
|
| 173 |
+
cited_results = results
|
| 174 |
+
relevant_sources = []
|
| 175 |
+
source_mapping = {}
|
| 176 |
+
sentence_to_source = {}
|
| 177 |
+
|
| 178 |
+
for i, sentence in enumerate(answer_sentences):
|
| 179 |
+
if sentence in sentence_to_source:
|
| 180 |
+
continue
|
| 181 |
+
max_similarity = max(similarity_matrix[i])
|
| 182 |
+
if max_similarity >= similarity_threshold:
|
| 183 |
+
most_similar_idx = np.argmax(similarity_matrix[i])
|
| 184 |
+
if most_similar_idx not in source_mapping:
|
| 185 |
+
source_mapping[most_similar_idx] = len(relevant_sources) + 1
|
| 186 |
+
relevant_sources.append((most_similar_idx, relevant_contents[most_similar_idx]))
|
| 187 |
+
citation_idx = source_mapping[most_similar_idx]
|
| 188 |
+
citation = f"<strong style='color:blue;'>[Source {citation_idx}]</strong>"
|
| 189 |
+
cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence)
|
| 190 |
+
sentence_to_source[sentence] = citation_idx
|
| 191 |
+
cited_results = cited_results.replace(sentence, cited_sentence)
|
| 192 |
+
|
| 193 |
+
# Format the sources for markdown rendering
|
| 194 |
+
sources_list = "\n\n## Sources:\n"
|
| 195 |
+
for idx, (original_idx, content) in enumerate(relevant_sources):
|
| 196 |
+
sources_list += f"""
|
| 197 |
+
<details style="margin: 10px 0; padding: 10px; border: 1px solid #ccc; border-radius: 5px; background-color: #f9f9f9;">
|
| 198 |
+
<summary style="font-weight: bold; cursor: pointer;">Source {idx + 1}</summary>
|
| 199 |
+
<pre style="white-space: pre-wrap; word-wrap: break-word; margin-top: 10px;">{content}</pre>
|
| 200 |
+
</details>
|
| 201 |
+
"""
|
| 202 |
+
cited_results += sources_list
|
| 203 |
+
return cited_results
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def infer_image_and_get_boxes(image, confidence_threshold=0.6):
|
| 207 |
+
results = model.predict(image)
|
| 208 |
+
boxes = [
|
| 209 |
+
(int(box.xyxy[0][0]), int(box.xyxy[0][1]), int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0]))
|
| 210 |
+
for result in results for box in result.boxes
|
| 211 |
+
if int(box.cls[0]) in {figure_class_index, table_class_index} and box.conf[0] > confidence_threshold
|
| 212 |
+
]
|
| 213 |
+
return boxes
|
| 214 |
+
|
| 215 |
+
def crop_images_from_boxes(image, boxes, scale_factor):
|
| 216 |
+
figures = []
|
| 217 |
+
tables = []
|
| 218 |
+
for (x1, y1, x2, y2, cls) in boxes:
|
| 219 |
+
cropped_img = image[int(y1 * scale_factor):int(y2 * scale_factor), int(x1 * scale_factor):int(x2 * scale_factor)]
|
| 220 |
+
if cls == figure_class_index:
|
| 221 |
+
figures.append(cropped_img)
|
| 222 |
+
elif cls == table_class_index:
|
| 223 |
+
tables.append(cropped_img)
|
| 224 |
+
return figures, tables
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def process_pdf(pdf_file_path):
|
| 228 |
+
doc = fitz.open(pdf_file_path)
|
| 229 |
+
all_figures = []
|
| 230 |
+
all_tables = []
|
| 231 |
+
low_dpi = 50
|
| 232 |
+
high_dpi = 300
|
| 233 |
+
scale_factor = high_dpi / low_dpi
|
| 234 |
+
low_res_pixmaps = [page.get_pixmap(dpi=low_dpi) for page in doc]
|
| 235 |
+
|
| 236 |
+
for page_num, low_res_pix in enumerate(low_res_pixmaps):
|
| 237 |
+
low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3)
|
| 238 |
+
boxes = infer_image_and_get_boxes(low_res_img)
|
| 239 |
+
|
| 240 |
+
if boxes:
|
| 241 |
+
high_res_pix = doc[page_num].get_pixmap(dpi=high_dpi)
|
| 242 |
+
high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3)
|
| 243 |
+
figures, tables = crop_images_from_boxes(high_res_img, boxes, scale_factor)
|
| 244 |
+
all_figures.extend(figures)
|
| 245 |
+
all_tables.extend(tables)
|
| 246 |
+
|
| 247 |
+
return all_figures, all_tables
|
| 248 |
+
|
| 249 |
+
# Set the page configuration for a modern look
|
| 250 |
+
|
| 251 |
+
# Set the page configuration for a modern look
|
| 252 |
+
# Set the page configuration for a modern look
|
| 253 |
+
st.set_page_config(page_title="PDF Reading Assistant", page_icon="π", layout="wide")
|
| 254 |
+
|
| 255 |
+
# Add some custom CSS for a modern look
|
| 256 |
+
st.markdown("""
|
| 257 |
+
<style>
|
| 258 |
+
/* Main background and padding */
|
| 259 |
+
.main {
|
| 260 |
+
background-color: #f8f9fa;
|
| 261 |
+
padding: 2rem;
|
| 262 |
+
font-family: 'Arial', sans-serif;
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
/* Section headers */
|
| 266 |
+
.section-header {
|
| 267 |
+
font-size: 2rem;
|
| 268 |
+
font-weight: bold;
|
| 269 |
+
color: #343a40;
|
| 270 |
+
margin-top: 2rem;
|
| 271 |
+
margin-bottom: 1rem;
|
| 272 |
+
text-align: center;
|
| 273 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
/* Containers */
|
| 277 |
+
.uploaded-file-container, .chat-container, .summary-container, .extract-container {
|
| 278 |
+
padding: 2rem;
|
| 279 |
+
background-color: #ffffff;
|
| 280 |
+
border-radius: 10px;
|
| 281 |
+
margin-bottom: 2rem;
|
| 282 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
/* Buttons */
|
| 286 |
+
.stButton>button {
|
| 287 |
+
background-color: #007bff;
|
| 288 |
+
color: white;
|
| 289 |
+
padding: 0.6rem 1.2rem;
|
| 290 |
+
border-radius: 5px;
|
| 291 |
+
border: none;
|
| 292 |
+
cursor: pointer;
|
| 293 |
+
font-size: 1rem;
|
| 294 |
+
transition: background-color 0.3s ease, transform 0.3s ease;
|
| 295 |
+
}
|
| 296 |
+
.stButton>button:hover {
|
| 297 |
+
background-color: #0056b3;
|
| 298 |
+
transform: translateY(-2px);
|
| 299 |
+
}
|
| 300 |
+
|
| 301 |
+
/* Chat messages */
|
| 302 |
+
.chat-message {
|
| 303 |
+
padding: 1rem;
|
| 304 |
+
border-radius: 10px;
|
| 305 |
+
margin-bottom: 1rem;
|
| 306 |
+
font-size: 1rem;
|
| 307 |
+
transition: all 0.3s ease;
|
| 308 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
|
| 309 |
+
}
|
| 310 |
+
.chat-message.user {
|
| 311 |
+
background-color: #e6f7ff;
|
| 312 |
+
border-left: 5px solid #007bff;
|
| 313 |
+
text-align: left;
|
| 314 |
+
}
|
| 315 |
+
.chat-message.bot {
|
| 316 |
+
background-color: #fff0f1;
|
| 317 |
+
border-left: 5px solid #dc3545;
|
| 318 |
+
text-align: left;
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
/* Input area */
|
| 322 |
+
.input-container {
|
| 323 |
+
display: flex;
|
| 324 |
+
align-items: center;
|
| 325 |
+
gap: 10px;
|
| 326 |
+
margin-top: 1rem;
|
| 327 |
+
}
|
| 328 |
+
.input-container textarea {
|
| 329 |
+
border: 2px solid #ccc;
|
| 330 |
+
border-radius: 10px;
|
| 331 |
+
padding: 10px;
|
| 332 |
+
width: 100%;
|
| 333 |
+
background-color: #fff;
|
| 334 |
+
transition: border-color 0.3s ease;
|
| 335 |
+
margin: 0;
|
| 336 |
+
font-size: 1rem;
|
| 337 |
+
}
|
| 338 |
+
.input-container textarea:focus {
|
| 339 |
+
border-color: #007bff;
|
| 340 |
+
outline: none;
|
| 341 |
+
}
|
| 342 |
+
.input-container button {
|
| 343 |
+
background-color: #007bff;
|
| 344 |
+
color: white;
|
| 345 |
+
padding: 0.6rem 1.2rem;
|
| 346 |
+
border-radius: 5px;
|
| 347 |
+
border: none;
|
| 348 |
+
cursor: pointer;
|
| 349 |
+
font-size: 1rem;
|
| 350 |
+
transition: background-color 0.3s ease, transform 0.3s ease;
|
| 351 |
+
}
|
| 352 |
+
.input-container button:hover {
|
| 353 |
+
background-color: #0056b3;
|
| 354 |
+
transform: translateY(-2px);
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
/* Expander */
|
| 358 |
+
.st-expander {
|
| 359 |
+
border: none;
|
| 360 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
| 361 |
+
margin-bottom: 2rem;
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
/* Markdown elements */
|
| 365 |
+
.stMarkdown {
|
| 366 |
+
font-size: 1rem;
|
| 367 |
+
color: #343a40;
|
| 368 |
+
line-height: 1.6;
|
| 369 |
+
}
|
| 370 |
+
|
| 371 |
+
/* Titles and subtitles */
|
| 372 |
+
.stTitle {
|
| 373 |
+
color: #343a40;
|
| 374 |
+
text-align: center;
|
| 375 |
+
margin-bottom: 1rem;
|
| 376 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 377 |
+
}
|
| 378 |
+
.stSubtitle {
|
| 379 |
+
color: #6c757d;
|
| 380 |
+
text-align: center;
|
| 381 |
+
margin-bottom: 1rem;
|
| 382 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 383 |
+
}
|
| 384 |
+
</style>
|
| 385 |
+
""", unsafe_allow_html=True)
|
| 386 |
+
|
| 387 |
+
# Streamlit interface
|
| 388 |
+
st.title("π PDF Reading Assistant")
|
| 389 |
+
st.markdown("### Extract tables, figures, summaries, and answers from your PDF files easily.")
|
| 390 |
+
|
| 391 |
+
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
| 392 |
+
if uploaded_file:
|
| 393 |
+
file_path = save_uploaded_file(uploaded_file)
|
| 394 |
+
with st.container():
|
| 395 |
+
st.markdown("<div class='section-header'>Extract Tables and Figures</div>", unsafe_allow_html=True)
|
| 396 |
+
with st.expander("Click to Extract Tables and Figures", expanded=True):
|
| 397 |
+
with st.container():
|
| 398 |
+
extract_button = st.button("Extract")
|
| 399 |
+
if extract_button:
|
| 400 |
+
figures, tables = process_pdf(file_path)
|
| 401 |
+
col1, col2 = st.columns(2)
|
| 402 |
+
with col1:
|
| 403 |
+
st.write("### Figures")
|
| 404 |
+
if figures:
|
| 405 |
+
for figure in figures:
|
| 406 |
+
st.image(figure, use_column_width=True)
|
| 407 |
+
else:
|
| 408 |
+
st.write("No figures found.")
|
| 409 |
+
with col2:
|
| 410 |
+
st.write("### Tables")
|
| 411 |
+
if tables:
|
| 412 |
+
for table in tables:
|
| 413 |
+
st.image(table, use_column_width=True)
|
| 414 |
+
else:
|
| 415 |
+
st.write("No tables found.")
|
| 416 |
+
|
| 417 |
+
with st.container():
|
| 418 |
+
st.markdown("<div class='section-header'>Get Summary</div>", unsafe_allow_html=True)
|
| 419 |
+
with st.expander("Click to Generate Summary", expanded=True):
|
| 420 |
+
with st.container():
|
| 421 |
+
summary_button = st.button("Generate Summary")
|
| 422 |
+
if summary_button:
|
| 423 |
+
summary = summarize_pdf(file_path)
|
| 424 |
+
st.markdown(summary, unsafe_allow_html=True)
|
| 425 |
+
|
| 426 |
+
with st.container():
|
| 427 |
+
st.markdown("<div class='section-header'>Chat with your PDF</div>", unsafe_allow_html=True)
|
| 428 |
+
st.write("### Chat with your PDF")
|
| 429 |
+
if 'chat_history' not in st.session_state:
|
| 430 |
+
st.session_state['chat_history'] = []
|
| 431 |
+
|
| 432 |
+
for chat in st.session_state['chat_history']:
|
| 433 |
+
chat_user_class = "user" if chat["user"] else ""
|
| 434 |
+
chat_bot_class = "bot" if chat["bot"] else ""
|
| 435 |
+
st.markdown(f"<div class='chat-message {chat_user_class}'>{chat['user']}</div>", unsafe_allow_html=True)
|
| 436 |
+
st.markdown(f"<div class='chat-message {chat_bot_class}'>{chat['bot']}</div>", unsafe_allow_html=True)
|
| 437 |
+
|
| 438 |
+
with st.form(key="chat_form", clear_on_submit=True):
|
| 439 |
+
user_input = st.text_area("Ask a question about the PDF:", key="user_input")
|
| 440 |
+
submit_button = st.form_submit_button(label="Send")
|
| 441 |
+
|
| 442 |
+
if submit_button and user_input:
|
| 443 |
+
st.session_state['chat_history'].append({"user": user_input, "bot": None})
|
| 444 |
+
answer = qa_pdf(file_path, user_input)
|
| 445 |
+
st.session_state['chat_history'][-1]["bot"] = answer
|
| 446 |
+
st.experimental_rerun()
|