File size: 9,263 Bytes
5535d25
897250e
 
561a0db
 
 
 
 
 
 
 
5aa1276
561a0db
897250e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aa1276
 
 
 
 
 
 
 
 
 
 
 
 
 
897250e
 
664d0de
897250e
 
 
 
 
 
 
 
 
 
5aa1276
897250e
 
 
 
 
 
 
 
 
 
 
 
 
 
561a0db
897250e
 
561a0db
 
 
897250e
 
 
 
 
 
561a0db
 
 
 
5aa1276
 
561a0db
 
897250e
 
561a0db
 
 
 
 
 
 
 
 
5aa1276
561a0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aa1276
 
 
 
 
 
 
 
 
 
 
 
a918060
 
 
 
 
5aa1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import streamlit as st
import os
import json

from transformers import GPT2Tokenizer, GPT2LMHeadModel, BertTokenizer, BertModel,T5Tokenizer, T5ForConditionalGeneration,AutoTokenizer, AutoModelForSeq2SeqLM

import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords

def is_new_file_upload(uploaded_file):
    if 'last_uploaded_file' in st.session_state:
        # Check if the newly uploaded file is different from the last one
        if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or
                uploaded_file.size != st.session_state.last_uploaded_file['size']):
            st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
            # st.write("A new src image file has been uploaded.")
            return True
        else:
            # st.write("The same src image file has been re-uploaded.")
            return False
    else:
        # st.write("This is the first file upload detected.")
        st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
        return True
def combined_similarity(similarity, sentence, query):
    # Tokenize both the sentence and the query
    # sentence_words = set(sentence.split())
    # query_words = set(query.split())
    sentence_words = set(word for word in sentence.split() if word.lower() not in st.session_state.stop_words)
    query_words = set(word for word in query.split() if word.lower() not in st.session_state.stop_words)

    # Calculate the number of common words
    common_words = len(sentence_words.intersection(query_words))

    # Adjust the similarity score with the common words count
    combined_score = similarity + (common_words / max(len(query_words), 1))  # Normalize by the length of the query to keep the score between -1 and 1
    return combined_score

big_text = """
    <div style='text-align: center;'>
        <h1 style='font-size: 30x;'>Knowledge Extraction A</h1>
    </div>
    """
    # Display the styled text
st.markdown(big_text, unsafe_allow_html=True)

uploaded_json_file = st.file_uploader("Upload a pre-processed file",
                                           type=['json'])
st.markdown(
    f'<a href="https://ikmtechnology.github.io/ikmtechnology/untethered_extracted_paragraphs.json" target="_blank">Sample 1 download and then upload to above</a>',
    unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> What is death? What is a lucid dream? What is the seat of consciousness?",unsafe_allow_html=True)
if uploaded_json_file is not None:
    if is_new_file_upload(uploaded_json_file):
        print("is new file uploaded")
        save_path = './uploaded_files'
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        with open(os.path.join(save_path, uploaded_json_file.name), "wb") as f:
            f.write(uploaded_json_file.getbuffer())  # Write the file to the specified location
            st.success(f'Saved file temp_{uploaded_json_file.name} in {save_path}')
            st.session_state.uploaded_path=os.path.join(save_path, uploaded_json_file.name)
            # st.session_state.page_count = utils.get_pdf_page_count(st.session_state.uploaded_pdf_path)
            # print("page_count=",st.session_state.page_count)
        content = uploaded_json_file.read()
        try:
            st.session_state.restored_paragraphs = json.loads(content)
            #print(data)
            # Check if the parsed data is a dictionary
            if isinstance(st.session_state.restored_paragraphs, list):
                # Count the restored_paragraphs of top-level elements
                st.session_state.list_count  = len(st.session_state.restored_paragraphs)
                st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
            else:
                st.write('The JSON content is not a dictionary.')
        except json.JSONDecodeError:
            st.write('Invalid JSON file.')
        st.rerun()
if 'is_initialized' not in st.session_state:
    st.session_state['is_initialized'] = True

    nltk.download('punkt')
    nltk.download('stopwords')
    st.session_state.stop_words = set(stopwords.words('english'))
    st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", )
    st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda')

if 'list_count' in st.session_state:
    st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
    if 'paragraph_sentence_encodings' not in st.session_state:
        print("start embedding paragarphs")
        read_progress_bar = st.progress(0)
        st.session_state.paragraph_sentence_encodings = []
        for index,paragraph in enumerate(st.session_state.restored_paragraphs):
            #print(paragraph)

            progress_percentage = (index) / (st.session_state.list_count - 1)
            # print(progress_percentage)
            read_progress_bar.progress(progress_percentage)

            sentence_encodings = []
            sentences = sent_tokenize(paragraph['text'])
            for sentence in sentences:
                if sentence.strip().endswith('?'):
                    sentence_encodings.append(None)
                    continue
                if len(sentence.strip()) < 4:
                    sentence_encodings.append(None)
                    continue
                sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to('cuda')
                with torch.no_grad():
                    sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy()
                sentence_encodings.append([sentence, sentence_encoding])
                # sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()])
            st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])
        st.rerun()
if 'paragraph_sentence_encodings' in st.session_state:
    query = st.text_input("Enter your query")
    if query:
        query_tokens = st.session_state.bert_tokenizer(query, return_tensors="pt", padding=True, truncation=True).to('cuda')
        with torch.no_grad():  # Disable gradient calculation for inference
            # Perform the forward pass on the GPU
            query_encoding = st.session_state.bert_model(**query_tokens).last_hidden_state[:, 0,
                             :].cpu().numpy()  # Move the result to CPU and convert to NumPy
        paragraph_scores = []
        sentence_scores = []
        sentence_encoding = []
        total_count=len(st.session_state.paragraph_sentence_encodings)
        processing_progress_bar = st.progress(0)
        for index,paragraph_sentence_encoding in enumerate(st.session_state.paragraph_sentence_encodings):
            progress_percentage = index / (total_count- 1)
            processing_progress_bar.progress(progress_percentage)
            best_similarity = -1
            sentence_similarities = []
            for sentence_encoding in paragraph_sentence_encoding[1]:
                if sentence_encoding:
                    similarity = cosine_similarity(query_encoding, sentence_encoding[1])[0][0]
                    # adjusted_similarity = similarity*len(sentence_encoding[0].split())**0.5
                    combined_score = combined_similarity(similarity, sentence_encoding[0], query)

                    # print("sentence="+sentence_encoding[0] + " len="+str())

                    sentence_similarities.append(combined_score)
                    sentence_scores.append((combined_score, sentence_encoding[0]))
                    # best_similarity = max(best_similarity, similarity)
            sentence_similarities.sort(reverse=True)

            # Calculate the average of the top three sentence similarities
            if len(sentence_similarities) >= 3:
                top_three_avg_similarity = np.mean(sentence_similarities[:3])
            elif sentence_similarities:
                top_three_avg_similarity = np.mean(sentence_similarities)
            else:
                top_three_avg_similarity = 0
            paragraph_scores.append((top_three_avg_similarity, paragraph_sentence_encoding[0]))
        sentence_scores = sorted(sentence_scores, key=lambda x: x[0], reverse=True)
        # Display the scores and sentences
        # print("Top scored sentences and their scores:")
        # for score, sentence in sentence_scores:  # Print top 10 for demonstration
        #     print(f"Score: {score:.4f}, Sentence: {sentence}")
        # Sort the paragraphs by their best similarity score
        paragraph_scores = sorted(paragraph_scores, key=lambda x: x[0], reverse=True)

        # Debug prints to understand the scores and paragraphs
        st.write("Top scored paragraphs and their scores:")
        for score, paragraph in paragraph_scores[:5]:  # Print top 5 for debugging

            st.write(f"Score: {score}, Paragraph: {paragraph['text']}")