Spaces:
Sleeping
Sleeping
show GUI after init
Browse files
app.py
CHANGED
@@ -69,6 +69,46 @@ def paraphrase(sentence):
|
|
69 |
#results.append(line)
|
70 |
return line
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
big_text = """
|
73 |
<div style='text-align: center;'>
|
74 |
<h1 style='font-size: 30x;'>Knowledge Extraction A</h1>
|
@@ -113,46 +153,7 @@ if uploaded_json_file is not None:
|
|
113 |
except json.JSONDecodeError:
|
114 |
st.write('Invalid JSON file.')
|
115 |
st.rerun()
|
116 |
-
if 'is_initialized' not in st.session_state:
|
117 |
-
st.session_state['is_initialized'] = True
|
118 |
-
|
119 |
-
nltk.download('punkt')
|
120 |
-
nltk.download('stopwords')
|
121 |
-
st.session_state.stop_words = set(stopwords.words('english'))
|
122 |
-
st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", )
|
123 |
-
st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda')
|
124 |
-
st.session_state.paraphrase_tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
125 |
-
st.session_state.paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws").to('cuda')
|
126 |
-
print(str(st.session_state.paraphrase_model ))
|
127 |
-
if 'list_count' in st.session_state:
|
128 |
-
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
|
129 |
-
if 'paragraph_sentence_encodings' not in st.session_state:
|
130 |
-
print("start embedding paragarphs")
|
131 |
-
read_progress_bar = st.progress(0)
|
132 |
-
st.session_state.paragraph_sentence_encodings = []
|
133 |
-
for index,paragraph in enumerate(st.session_state.restored_paragraphs):
|
134 |
-
#print(paragraph)
|
135 |
|
136 |
-
progress_percentage = (index) / (st.session_state.list_count - 1)
|
137 |
-
# print(progress_percentage)
|
138 |
-
read_progress_bar.progress(progress_percentage)
|
139 |
-
|
140 |
-
sentence_encodings = []
|
141 |
-
sentences = sent_tokenize(paragraph['text'])
|
142 |
-
for sentence in sentences:
|
143 |
-
if sentence.strip().endswith('?'):
|
144 |
-
sentence_encodings.append(None)
|
145 |
-
continue
|
146 |
-
if len(sentence.strip()) < 4:
|
147 |
-
sentence_encodings.append(None)
|
148 |
-
continue
|
149 |
-
sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to('cuda')
|
150 |
-
with torch.no_grad():
|
151 |
-
sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy()
|
152 |
-
sentence_encodings.append([sentence, sentence_encoding])
|
153 |
-
# sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()])
|
154 |
-
st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])
|
155 |
-
st.rerun()
|
156 |
if 'paragraph_sentence_encodings' in st.session_state:
|
157 |
query = st.text_input("Enter your query")
|
158 |
|
|
|
69 |
#results.append(line)
|
70 |
return line
|
71 |
|
72 |
+
if 'is_initialized' not in st.session_state:
|
73 |
+
st.session_state['is_initialized'] = True
|
74 |
+
|
75 |
+
nltk.download('punkt')
|
76 |
+
nltk.download('stopwords')
|
77 |
+
st.session_state.stop_words = set(stopwords.words('english'))
|
78 |
+
st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", )
|
79 |
+
st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda')
|
80 |
+
st.session_state.paraphrase_tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
81 |
+
st.session_state.paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws").to('cuda')
|
82 |
+
print(str(st.session_state.paraphrase_model ))
|
83 |
+
if 'list_count' in st.session_state:
|
84 |
+
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
|
85 |
+
if 'paragraph_sentence_encodings' not in st.session_state:
|
86 |
+
print("start embedding paragarphs")
|
87 |
+
read_progress_bar = st.progress(0)
|
88 |
+
st.session_state.paragraph_sentence_encodings = []
|
89 |
+
for index,paragraph in enumerate(st.session_state.restored_paragraphs):
|
90 |
+
#print(paragraph)
|
91 |
+
|
92 |
+
progress_percentage = (index) / (st.session_state.list_count - 1)
|
93 |
+
# print(progress_percentage)
|
94 |
+
read_progress_bar.progress(progress_percentage)
|
95 |
+
|
96 |
+
sentence_encodings = []
|
97 |
+
sentences = sent_tokenize(paragraph['text'])
|
98 |
+
for sentence in sentences:
|
99 |
+
if sentence.strip().endswith('?'):
|
100 |
+
sentence_encodings.append(None)
|
101 |
+
continue
|
102 |
+
if len(sentence.strip()) < 4:
|
103 |
+
sentence_encodings.append(None)
|
104 |
+
continue
|
105 |
+
sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to('cuda')
|
106 |
+
with torch.no_grad():
|
107 |
+
sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy()
|
108 |
+
sentence_encodings.append([sentence, sentence_encoding])
|
109 |
+
# sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()])
|
110 |
+
st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])
|
111 |
+
st.rerun()
|
112 |
big_text = """
|
113 |
<div style='text-align: center;'>
|
114 |
<h1 style='font-size: 30x;'>Knowledge Extraction A</h1>
|
|
|
153 |
except json.JSONDecodeError:
|
154 |
st.write('Invalid JSON file.')
|
155 |
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
if 'paragraph_sentence_encodings' in st.session_state:
|
158 |
query = st.text_input("Enter your query")
|
159 |
|