testchatbot / app.py
zmbfeng's picture
convert params to string to be displayed
f5a68d4 verified
raw
history blame
5.43 kB
import gradio as gr
import random
import os
from huggingface_hub import login
from transformers import pipeline
from transformers import GPT2Tokenizer, GPT2LMHeadModel
login(os.environ["HF_TOKEN"])
#https://huggingface.co/facebook/opt-1.3b
#generator = pipeline('text-generation', model="microsoft/DialoGPT-medium")
tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-medium')
original_model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-medium')
fine_tuned_model = GPT2LMHeadModel.from_pretrained('zmbfeng/FineTune-1')
def create_response_original(input_str,
num_beams,
num_return_sequences,
temperature,
repetition_penalty,
top_p,
top_k,
do_sample):
print("num_beams=" + str(num_beams)
print("num_return_sequences" + str(num_return_sequences)
print("top_p" + str(top_p)
print("top_k" + str(top_k)
print("repetition_penalty" + str(repetition_penalty)
print("temperature" + str(temperature)
print("do_sample" + str(do_sample)
#output_raw= generator(input_str)
"""print (output_raw)"""
#output_str = output_raw[0]['generated_text']
#output_str = output_str.replace("\n", "")
#output_str = output_str.replace(input_str, "")
#output_str = tokenizer.decode(model.generate(**tokenizer("What are John West's hobbies?"+tokenizer.eos_token,return_tensors="pt",max_length=200))[0])
output_str = tokenizer.decode(original_model.generate(**tokenizer(input_str+tokenizer.eos_token,return_tensors="pt",max_length=200))[0])
return (output_str)
def create_response_fine_tuned(input_str):
#output_raw= generator(input_str)
"""print (output_raw)"""
#output_str = output_raw[0]['generated_text']
#output_str = output_str.replace("\n", "")
#output_str = output_str.replace(input_str, "")
#output_str = tokenizer.decode(model.generate(**tokenizer("What are John West's hobbies?"+tokenizer.eos_token,return_tensors="pt",max_length=200))[0])
output_str = tokenizer.decode(fine_tuned_model.generate(**tokenizer(input_str+tokenizer.eos_token,return_tensors="pt",max_length=200))[0])
return (output_str)
interface1 = gr.Interface(fn=create_response_original,
title="original",
description="original language model, no fine tuning",
examples=[
["What is death?"], # The first example
["One of the best teachers in all of life turns out to be what?"], # The second example
["what is your most meaningful relationship?"], # The third example
["What actually gives life meaning?"]
],
inputs=[
gr.Textbox(label="input text here", lines=3),
gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
"likely ones (specified in num_beams)", value=7),
gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
value=5),
gr.Number(
label="temperature (decimal) controls the creativity or randomness of the output. A higher temperature" +
" (e.g., 0.9) results in more diverse and creative output, while a lower temperature (e.g., 0.2)" +
" makes the output more deterministic and focused",
value=0.2),
gr.Number(label="repetition_penalty (decimal) penalizes words that have already appeared in the output, " +
"making them less likely to be generated again. A higher repetition_penalty (e.g., 1.5) results" +
"in more varied and non-repetitive output.",
value=1.5),
gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
" to reach a certain threshold",
value=0.9),
gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
"This means that only the tokens with the highest probabilities are considered for sampling" +
"This reduces the diversity of the generated sequences, "+
"but also makes them more likely to be coherent and fluent.",
value=50),
gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
"which means that it will select the word with the highest probability at each step. " +
"This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
"If is set to True, the generate function will use stochastic sampling, which means that it will randomly" +
" select a word from the probability distribution at each step. This results in a more diverse and creative" +
" output, but it might also introduce errors and inconsistencies ", value=True)
], outputs="text")
interface2 = gr.Interface(fn=create_response_fine_tuned, inputs="text", outputs="text", title="Fine Tuned")
demo = gr.TabbedInterface([interface1, interface2], ["Original", "Fine Tuned"])
# with gr.Blocks() as demo:
# with gr.Row():
#
demo.launch()