zmbfeng commited on
Commit
0ff9149
·
1 Parent(s): 8a1864f

adjustment

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -16,10 +16,10 @@ untethered_paraphrased_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untether
16
  default_num_return_sequences=5
17
  default_temperature=0.5
18
  default_repetition_penalty=1.5
19
- default_top_p=1.9
20
  default_top_k=50
21
  default_do_sample=True
22
- default_seed=45
23
  def create_response(input_str,
24
  # num_beams,
25
  num_return_sequences,
@@ -49,25 +49,25 @@ def create_response(input_str,
49
  print("seed" + str(seed))
50
  encoded = tokenizer.encode_plus(input_str + tokenizer.eos_token, return_tensors="pt")
51
  input_ids = encoded["input_ids"]
52
- attention_mask = encoded["attention_mask"]
53
 
54
  if seed != -1:
55
  set_seed(seed)
56
  if model_name == "original_model":
57
- output = original_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences,return_dict_in_generate=True, output_scores=True )
58
  transition_scores = original_model.compute_transition_scores(output.sequences, output.scores,
59
  normalize_logits=False)
60
 
61
  elif model_name == "untethered_model":
62
- output = untethered_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences,return_dict_in_generate=True, output_scores=True )
63
  transition_scores = untethered_model.compute_transition_scores(output.sequences, output.scores,
64
  normalize_logits=False)
65
  elif model_name == "untethered_paraphrased_model":
66
- output = untethered_paraphrased_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences,return_dict_in_generate=True, output_scores=True )
67
  transition_scores = untethered_paraphrased_model.compute_transition_scores(output.sequences, output.scores,
68
  normalize_logits=False)
69
  else:
70
- output = original_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences,return_dict_in_generate=True, output_scores=True )
71
  transition_scores = original_model.compute_transition_scores(output.sequences, output.scores,
72
  normalize_logits=False)
73
  score_list = []
 
16
  default_num_return_sequences=5
17
  default_temperature=0.5
18
  default_repetition_penalty=1.5
19
+ default_top_p=2
20
  default_top_k=50
21
  default_do_sample=True
22
+ default_seed=43
23
  def create_response(input_str,
24
  # num_beams,
25
  num_return_sequences,
 
49
  print("seed" + str(seed))
50
  encoded = tokenizer.encode_plus(input_str + tokenizer.eos_token, return_tensors="pt")
51
  input_ids = encoded["input_ids"]
52
+ #attention_mask = encoded["attention_mask"]
53
 
54
  if seed != -1:
55
  set_seed(seed)
56
  if model_name == "original_model":
57
+ output = original_model.generate(input_ids,do_sample=do_sample, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences,return_dict_in_generate=True, output_scores=True )
58
  transition_scores = original_model.compute_transition_scores(output.sequences, output.scores,
59
  normalize_logits=False)
60
 
61
  elif model_name == "untethered_model":
62
+ output = untethered_model.generate(input_ids, do_sample=do_sample, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences,return_dict_in_generate=True, output_scores=True )
63
  transition_scores = untethered_model.compute_transition_scores(output.sequences, output.scores,
64
  normalize_logits=False)
65
  elif model_name == "untethered_paraphrased_model":
66
+ output = untethered_paraphrased_model.generate(input_ids, do_sample=do_sample, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences,return_dict_in_generate=True, output_scores=True )
67
  transition_scores = untethered_paraphrased_model.compute_transition_scores(output.sequences, output.scores,
68
  normalize_logits=False)
69
  else:
70
+ output = original_model.generate(input_ids,do_sample=do_sample, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences,return_dict_in_generate=True, output_scores=True )
71
  transition_scores = original_model.compute_transition_scores(output.sequences, output.scores,
72
  normalize_logits=False)
73
  score_list = []