zmbfeng commited on
Commit
57062ef
·
verified ·
1 Parent(s): 621db44

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -39
app.py CHANGED
@@ -13,12 +13,12 @@ untethered_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untethered_20240225_
13
  untethered_paraphrased_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untethered_20240227_epochs_350')
14
 
15
  def create_response_untethered_paraphrased(input_str,
16
- num_beams,
17
  num_return_sequences,
18
  temperature,
19
  repetition_penalty,
20
  top_p,
21
- top_k,
22
  do_sample):
23
  print("input_str="+input_str)
24
  num_beams = int(num_beams)
@@ -62,12 +62,12 @@ def create_response_untethered_paraphrased(input_str,
62
 
63
 
64
  def create_response_untethered(input_str,
65
- num_beams,
66
  num_return_sequences,
67
  temperature,
68
  repetition_penalty,
69
  top_p,
70
- top_k,
71
  do_sample):
72
  print("input_str="+input_str)
73
  num_beams = int(num_beams)
@@ -110,12 +110,12 @@ def create_response_untethered(input_str,
110
  return outputs
111
 
112
  def create_response_original(input_str,
113
- num_beams,
114
  num_return_sequences,
115
  temperature,
116
  repetition_penalty,
117
  top_p,
118
- top_k,
119
  do_sample):
120
  print("input_str="+input_str)
121
  num_beams = int(num_beams)
@@ -171,15 +171,15 @@ interface1 = gr.Interface(fn=create_response_original,
171
  title="original",
172
  description="original language model, no fine tuning",
173
  examples=[
174
- ["What is death?",7,5,0.2,1.5,0.9,50,True], # The first example
175
- ["One of the best teachers in all of life turns out to be what?",7,5,0.2,1.5,0.9,50,True], # The second example
176
- ["what is your most meaningful relationship?",7,5,0.2,1.5,0.9,50,True], # The third example
177
- ["What actually gives life meaning?",7,5,0.2,1.5,0.9,50,True]
178
  ],
179
  inputs=[
180
  gr.Textbox(label="input text here", lines=3),
181
- gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
182
- "likely ones (specified in num_beams)", value=7),
183
  gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
184
  value=5),
185
  gr.Number(
@@ -194,11 +194,11 @@ interface1 = gr.Interface(fn=create_response_original,
194
  gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
195
  " to reach a certain threshold",
196
  value=0.9),
197
- gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
198
- "This means that only the tokens with the highest probabilities are considered for sampling" +
199
- "This reduces the diversity of the generated sequences, "+
200
- "but also makes them more likely to be coherent and fluent.",
201
- value=50),
202
  gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
203
  "which means that it will select the word with the highest probability at each step. " +
204
  "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
@@ -212,15 +212,15 @@ interface2 = gr.Interface(fn=create_response_untethered,
212
  title="untethered",
213
  description="untethered fine tuning",
214
  examples=[
215
- ["What is death?",7,5,0.2,1.5,0.9,50,True], # The first example
216
- ["One of the best teachers in all of life turns out to be what?",7,5,0.2,1.5,0.9,50,True], # The second example
217
- ["what is your most meaningful relationship?",7,5,0.2,1.5,0.9,50,True], # The third example
218
- ["What actually gives life meaning?",7,5,0.2,1.5,0.9,50,True]
219
  ],
220
  inputs=[
221
  gr.Textbox(label="input text here", lines=3),
222
- gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
223
- "likely ones (specified in num_beams)", value=7),
224
  gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
225
  value=5),
226
  gr.Number(
@@ -235,11 +235,11 @@ interface2 = gr.Interface(fn=create_response_untethered,
235
  gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
236
  " to reach a certain threshold",
237
  value=0.9),
238
- gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
239
- "This means that only the tokens with the highest probabilities are considered for sampling" +
240
- "This reduces the diversity of the generated sequences, "+
241
- "but also makes them more likely to be coherent and fluent.",
242
- value=50),
243
  gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
244
  "which means that it will select the word with the highest probability at each step. " +
245
  "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
@@ -252,15 +252,15 @@ interface3 = gr.Interface(fn=create_response_untethered_paraphrased,
252
  title="untethered paraphrased",
253
  description="untethered paraphrased fine tuning",
254
  examples=[
255
- ["What is death?",7,5,0.2,1.5,0.9,50,True], # The first example
256
- ["One of the best teachers in all of life turns out to be what?",7,5,0.2,1.5,0.9,50,True], # The second example
257
- ["what is your most meaningful relationship?",7,5,0.2,1.5,0.9,50,True], # The third example
258
- ["What actually gives life meaning?",7,5,0.2,1.5,0.9,50,True]
259
  ],
260
  inputs=[
261
  gr.Textbox(label="input text here", lines=3),
262
- gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
263
- "likely ones (specified in num_beams)", value=7),
264
  gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
265
  value=5),
266
  gr.Number(
@@ -275,11 +275,11 @@ interface3 = gr.Interface(fn=create_response_untethered_paraphrased,
275
  gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
276
  " to reach a certain threshold",
277
  value=0.9),
278
- gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
279
- "This means that only the tokens with the highest probabilities are considered for sampling" +
280
- "This reduces the diversity of the generated sequences, "+
281
- "but also makes them more likely to be coherent and fluent.",
282
- value=50),
283
  gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
284
  "which means that it will select the word with the highest probability at each step. " +
285
  "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
 
13
  untethered_paraphrased_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untethered_20240227_epochs_350')
14
 
15
  def create_response_untethered_paraphrased(input_str,
16
+ # num_beams,
17
  num_return_sequences,
18
  temperature,
19
  repetition_penalty,
20
  top_p,
21
+ # top_k,
22
  do_sample):
23
  print("input_str="+input_str)
24
  num_beams = int(num_beams)
 
62
 
63
 
64
  def create_response_untethered(input_str,
65
+ # num_beams,
66
  num_return_sequences,
67
  temperature,
68
  repetition_penalty,
69
  top_p,
70
+ # top_k,
71
  do_sample):
72
  print("input_str="+input_str)
73
  num_beams = int(num_beams)
 
110
  return outputs
111
 
112
  def create_response_original(input_str,
113
+ # num_beams,
114
  num_return_sequences,
115
  temperature,
116
  repetition_penalty,
117
  top_p,
118
+ # top_k,
119
  do_sample):
120
  print("input_str="+input_str)
121
  num_beams = int(num_beams)
 
171
  title="original",
172
  description="original language model, no fine tuning",
173
  examples=[
174
+ ["What is death?",5,0.2,1.5,0.9,True], # The first example
175
+ ["One of the best teachers in all of life turns out to be what?",5,0.2,1.5,0.9,True], # The second example
176
+ ["what is your most meaningful relationship?",5,0.2,1.5,0.9,True], # The third example
177
+ ["What actually gives life meaning?",5,0.2,1.5,0.9,True]
178
  ],
179
  inputs=[
180
  gr.Textbox(label="input text here", lines=3),
181
+ # gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
182
+ # "likely ones (specified in num_beams)", value=7),
183
  gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
184
  value=5),
185
  gr.Number(
 
194
  gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
195
  " to reach a certain threshold",
196
  value=0.9),
197
+ # gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
198
+ # "This means that only the tokens with the highest probabilities are considered for sampling" +
199
+ # "This reduces the diversity of the generated sequences, "+
200
+ # "but also makes them more likely to be coherent and fluent.",
201
+ # value=50),
202
  gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
203
  "which means that it will select the word with the highest probability at each step. " +
204
  "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
 
212
  title="untethered",
213
  description="untethered fine tuning",
214
  examples=[
215
+ ["What is death?",5,0.2,1.5,0.9,True], # The first example
216
+ ["One of the best teachers in all of life turns out to be what?",5,0.2,1.5,0.9,True], # The second example
217
+ ["what is your most meaningful relationship?",5,0.2,1.5,0.9,True], # The third example
218
+ ["What actually gives life meaning?",5,0.2,1.5,0.9,True]
219
  ],
220
  inputs=[
221
  gr.Textbox(label="input text here", lines=3),
222
+ # gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
223
+ # "likely ones (specified in num_beams)", value=7),
224
  gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
225
  value=5),
226
  gr.Number(
 
235
  gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
236
  " to reach a certain threshold",
237
  value=0.9),
238
+ # gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
239
+ # "This means that only the tokens with the highest probabilities are considered for sampling" +
240
+ # "This reduces the diversity of the generated sequences, "+
241
+ # "but also makes them more likely to be coherent and fluent.",
242
+ # value=50),
243
  gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
244
  "which means that it will select the word with the highest probability at each step. " +
245
  "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
 
252
  title="untethered paraphrased",
253
  description="untethered paraphrased fine tuning",
254
  examples=[
255
+ ["What is death?",5,0.2,1.5,0.9,True], # The first example
256
+ ["One of the best teachers in all of life turns out to be what?",5,0.2,1.5,0.9,True], # The second example
257
+ ["what is your most meaningful relationship?",5,0.2,1.5,0.9,True], # The third example
258
+ ["What actually gives life meaning?",5,0.2,1.5,0.9,True]
259
  ],
260
  inputs=[
261
  gr.Textbox(label="input text here", lines=3),
262
+ # gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
263
+ # "likely ones (specified in num_beams)", value=7),
264
  gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
265
  value=5),
266
  gr.Number(
 
275
  gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
276
  " to reach a certain threshold",
277
  value=0.9),
278
+ # gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
279
+ # "This means that only the tokens with the highest probabilities are considered for sampling" +
280
+ # "This reduces the diversity of the generated sequences, "+
281
+ # "but also makes them more likely to be coherent and fluent.",
282
+ # value=50),
283
  gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
284
  "which means that it will select the word with the highest probability at each step. " +
285
  "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +