Spaces:
Sleeping
Sleeping
question generation
Browse files
app.py
CHANGED
@@ -24,21 +24,21 @@ login(os.environ["HF_TOKEN"])
|
|
24 |
dt = datetime.datetime.now()
|
25 |
print(dt)
|
26 |
print("loading models")
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-medium',cache_dir="G:\My Drive\Avatar\language_models_windows")
|
36 |
-
original_model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-medium',cache_dir="G:\My Drive\Avatar\language_models_windows")
|
37 |
-
untethered_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untethered_20240225_epochs_500',cache_dir="G:\My Drive\Avatar\language_models_windows")
|
38 |
-
question_generation_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap",cache_dir="G:\\My Drive\\Avatar\\language_models_windows")
|
39 |
-
question_generation_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap",cache_dir="G:\\My Drive\\Avatar\\language_models_windows")
|
40 |
-
paraphrase_tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws",cache_dir="G:\\My Drive\\Avatar\\language_models_windows")
|
41 |
-
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws",cache_dir="G:\\My Drive\\Avatar\\language_models_windows")
|
42 |
|
43 |
# tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-medium',cache_dir="C:\\Users\\zmbfeng\\Google Drive\\language_models_windows")
|
44 |
# original_model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-medium',cache_dir="C:\\Users\\zmbfeng\\Google Drive\\Avatar\\language_models_windows")
|
@@ -49,6 +49,18 @@ paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Pa
|
|
49 |
# paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws",cache_dir="C:\\Users\\zmbfeng\\Google Drive\\Avatar\\language_models_windows")
|
50 |
default_temperature=0.01
|
51 |
default_seed=43
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def create_response(input_str,
|
53 |
temperature,
|
54 |
seed,
|
@@ -82,23 +94,14 @@ def create_response(input_str,
|
|
82 |
|
83 |
common_examples_string="<br/>Sample Inputs:<br/>What is death?<br/>One of the best teachers in all of life turns out to be what?<br/>what is your most meaningful relationship?<br/>What actually gives life meaning?<br/>"
|
84 |
|
85 |
-
interface_original = gr.Interface(fn=
|
86 |
-
title="
|
87 |
-
description="
|
88 |
-
#examples=examples,
|
89 |
inputs=[
|
90 |
gr.Textbox(label="input text here", lines=3),
|
91 |
-
# gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
|
92 |
-
# "likely ones (specified in num_beams)", value=7),
|
93 |
-
gr.Number(
|
94 |
-
label="temperature (decimal) controls the creativity or randomness of the output. A higher temperature" +
|
95 |
-
" (e.g., 1.6) results in more diverse and creative output, while a lower temperature (e.g., 0.02)" +
|
96 |
-
" makes the output more deterministic and focused",
|
97 |
-
value=default_temperature),
|
98 |
gr.Number(
|
99 |
-
label="
|
100 |
-
value=
|
101 |
-
gr.Textbox(label="model", lines=3, value="original_model",visible=False)
|
102 |
],
|
103 |
outputs="html"
|
104 |
)
|
|
|
24 |
dt = datetime.datetime.now()
|
25 |
print(dt)
|
26 |
print("loading models")
|
27 |
+
tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-medium')
|
28 |
+
original_model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-medium')
|
29 |
+
untethered_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untethered_20240225_epochs_500')
|
30 |
+
question_generation_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
31 |
+
question_generation_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
32 |
+
paraphrase_tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
33 |
+
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
34 |
+
|
35 |
+
# tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-medium',cache_dir="G:\My Drive\Avatar\language_models_windows")
|
36 |
+
# original_model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-medium',cache_dir="G:\My Drive\Avatar\language_models_windows")
|
37 |
+
# untethered_model = GPT2LMHeadModel.from_pretrained('zmbfeng/untethered_20240225_epochs_500',cache_dir="G:\My Drive\Avatar\language_models_windows")
|
38 |
+
# question_generation_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap",cache_dir="G:\\My Drive\\Avatar\\language_models_windows")
|
39 |
+
# question_generation_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap",cache_dir="G:\\My Drive\\Avatar\\language_models_windows")
|
40 |
+
# paraphrase_tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws",cache_dir="G:\\My Drive\\Avatar\\language_models_windows")
|
41 |
+
# paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws",cache_dir="G:\\My Drive\\Avatar\\language_models_windows")
|
42 |
|
43 |
# tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-medium',cache_dir="C:\\Users\\zmbfeng\\Google Drive\\language_models_windows")
|
44 |
# original_model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-medium',cache_dir="C:\\Users\\zmbfeng\\Google Drive\\Avatar\\language_models_windows")
|
|
|
49 |
# paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws",cache_dir="C:\\Users\\zmbfeng\\Google Drive\\Avatar\\language_models_windows")
|
50 |
default_temperature=0.01
|
51 |
default_seed=43
|
52 |
+
def create_response_question_generation(input_str, max_length=64):
|
53 |
+
input_text = "answer: %s context: %s </s>" % (input_str, input_str)
|
54 |
+
print(f"create question input_text={input_text}")
|
55 |
+
features = question_generation_tokenizer([input_text], return_tensors='pt')
|
56 |
+
|
57 |
+
output = question_generation_model.generate(input_ids=features['input_ids'],
|
58 |
+
attention_mask=features['attention_mask'],
|
59 |
+
max_length=max_length)
|
60 |
+
|
61 |
+
return question_generation_tokenizer.decode(output[0])
|
62 |
+
|
63 |
+
|
64 |
def create_response(input_str,
|
65 |
temperature,
|
66 |
seed,
|
|
|
94 |
|
95 |
common_examples_string="<br/>Sample Inputs:<br/>What is death?<br/>One of the best teachers in all of life turns out to be what?<br/>what is your most meaningful relationship?<br/>What actually gives life meaning?<br/>"
|
96 |
|
97 |
+
interface_original = gr.Interface(fn=create_response_question_generation,
|
98 |
+
title="Question Generation",
|
99 |
+
description="Enter a statment like Paris is the captial of France",
|
|
|
100 |
inputs=[
|
101 |
gr.Textbox(label="input text here", lines=3),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
gr.Number(
|
103 |
+
label="max length",
|
104 |
+
value=64),
|
|
|
105 |
],
|
106 |
outputs="html"
|
107 |
)
|