Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -46,10 +46,13 @@ def create_response_untethered_paraphrased(input_str,
|
|
46 |
# num_beams=num_beams,
|
47 |
# num_return_sequences=num_return_sequences)[0])
|
48 |
|
49 |
-
input_ids = tokenizer.encode(input_str + tokenizer.eos_token, return_tensors="pt")
|
|
|
|
|
|
|
50 |
#output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=0.2, top_p=0.9, repetition_penalty=1.5,num_return_sequences=6)
|
51 |
#output_ids = untethered_paraphrased_model.generate(input_ids,do_sample=do_sample, max_length=100, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences, num_beams = num_beams)
|
52 |
-
output_ids = untethered_paraphrased_model.generate(input_ids,do_sample=True,
|
53 |
outputs = ""
|
54 |
for output_id in output_ids:
|
55 |
output = tokenizer.decode(output_id, skip_special_tokens=True)
|
@@ -99,7 +102,7 @@ def create_response_untethered(input_str,
|
|
99 |
|
100 |
|
101 |
#output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=0.2, top_p=0.9, repetition_penalty=1.5,num_return_sequences=6)
|
102 |
-
output_ids = untethered_model.generate(input_ids,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences, num_beams = num_beams)
|
103 |
outputs = ""
|
104 |
for output_id in output_ids:
|
105 |
output = tokenizer.decode(output_id, skip_special_tokens=True)
|
@@ -140,9 +143,12 @@ def create_response_original(input_str,
|
|
140 |
# num_beams=num_beams,
|
141 |
# num_return_sequences=num_return_sequences)[0])
|
142 |
|
143 |
-
input_ids = tokenizer.encode(input_str + tokenizer.eos_token, return_tensors="pt")
|
|
|
|
|
|
|
144 |
#output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=0.2, top_p=0.9, repetition_penalty=1.5,num_return_sequences=6)
|
145 |
-
output_ids = original_model.generate(input_ids,do_sample=do_sample,
|
146 |
outputs = ""
|
147 |
for output_id in output_ids:
|
148 |
output = tokenizer.decode(output_id, skip_special_tokens=True)
|
|
|
46 |
# num_beams=num_beams,
|
47 |
# num_return_sequences=num_return_sequences)[0])
|
48 |
|
49 |
+
#input_ids = tokenizer.encode(input_str + tokenizer.eos_token, return_tensors="pt")
|
50 |
+
encoded = tokenizer.encode_plus(input_str + tokenizer.eos_token, return_tensors="pt")
|
51 |
+
input_ids = encoded["input_ids"]
|
52 |
+
attention_mask = encoded["attention_mask"]
|
53 |
#output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=0.2, top_p=0.9, repetition_penalty=1.5,num_return_sequences=6)
|
54 |
#output_ids = untethered_paraphrased_model.generate(input_ids,do_sample=do_sample, max_length=100, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences, num_beams = num_beams)
|
55 |
+
output_ids = untethered_paraphrased_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=True,attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences)
|
56 |
outputs = ""
|
57 |
for output_id in output_ids:
|
58 |
output = tokenizer.decode(output_id, skip_special_tokens=True)
|
|
|
102 |
|
103 |
|
104 |
#output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=0.2, top_p=0.9, repetition_penalty=1.5,num_return_sequences=6)
|
105 |
+
output_ids = untethered_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample, attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences, num_beams = num_beams)
|
106 |
outputs = ""
|
107 |
for output_id in output_ids:
|
108 |
output = tokenizer.decode(output_id, skip_special_tokens=True)
|
|
|
143 |
# num_beams=num_beams,
|
144 |
# num_return_sequences=num_return_sequences)[0])
|
145 |
|
146 |
+
#input_ids = tokenizer.encode(input_str + tokenizer.eos_token, return_tensors="pt")
|
147 |
+
encoded = tokenizer.encode_plus(input_str + tokenizer.eos_token, return_tensors="pt")
|
148 |
+
input_ids = encoded["input_ids"]
|
149 |
+
attention_mask = encoded["attention_mask"]
|
150 |
#output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=0.2, top_p=0.9, repetition_penalty=1.5,num_return_sequences=6)
|
151 |
+
output_ids = original_model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,do_sample=do_sample,attention_mask=attention_mask, max_length=100, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences, num_beams = num_beams)
|
152 |
outputs = ""
|
153 |
for output_id in output_ids:
|
154 |
output = tokenizer.decode(output_id, skip_special_tokens=True)
|