zmbfeng commited on
Commit
bebb895
·
verified ·
1 Parent(s): e873c4e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -44,10 +44,10 @@ def create_response_original(input_str,
44
  input_ids = tokenizer.encode(input_str + tokenizer.eos_token, return_tensors="pt")
45
  #output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=0.2, top_p=0.9, repetition_penalty=1.5,num_return_sequences=6)
46
  output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences)
47
- outputs = ""
48
  for output_id in output_ids:
49
  output = tokenizer.decode(output_id, skip_special_tokens=True)
50
- outputs= outputs+output+"<br/>"
51
  return outputs
52
 
53
  def create_response_fine_tuned(input_str):
@@ -98,7 +98,7 @@ interface1 = gr.Interface(fn=create_response_original,
98
  "If is set to True, the generate function will use stochastic sampling, which means that it will randomly" +
99
  " select a word from the probability distribution at each step. This results in a more diverse and creative" +
100
  " output, but it might also introduce errors and inconsistencies ", value=True)
101
- ], outputs="text")
102
  interface2 = gr.Interface(fn=create_response_fine_tuned, inputs="text", outputs="text", title="Fine Tuned")
103
  demo = gr.TabbedInterface([interface1, interface2], ["Original", "Fine Tuned"])
104
  # with gr.Blocks() as demo:
 
44
  input_ids = tokenizer.encode(input_str + tokenizer.eos_token, return_tensors="pt")
45
  #output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=0.2, top_p=0.9, repetition_penalty=1.5,num_return_sequences=6)
46
  output_ids = fine_tuned_model.generate(input_ids,do_sample=True, max_length=100, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty,num_return_sequences=num_return_sequences)
47
+ outputs = []]
48
  for output_id in output_ids:
49
  output = tokenizer.decode(output_id, skip_special_tokens=True)
50
+ outputs.append(output)
51
  return outputs
52
 
53
  def create_response_fine_tuned(input_str):
 
98
  "If is set to True, the generate function will use stochastic sampling, which means that it will randomly" +
99
  " select a word from the probability distribution at each step. This results in a more diverse and creative" +
100
  " output, but it might also introduce errors and inconsistencies ", value=True)
101
+ ], outputs=[gr.Textbox(label="output response", lines=30)])
102
  interface2 = gr.Interface(fn=create_response_fine_tuned, inputs="text", outputs="text", title="Fine Tuned")
103
  demo = gr.TabbedInterface([interface1, interface2], ["Original", "Fine Tuned"])
104
  # with gr.Blocks() as demo: