zmbfeng commited on
Commit
d17208b
·
2 Parent(s): 6a67826 c6e7ac9

Merge branch 'main' of https://huggingface.co/spaces/zmbfeng/testchatbot

Browse files
Files changed (1) hide show
  1. app.py +86 -36
app.py CHANGED
@@ -59,7 +59,23 @@ def create_response(input_str,
59
  outputs=outputs+output+"<br/>"
60
  return outputs
61
 
62
- common_input_component_list = [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  gr.Textbox(label="input text here", lines=3),
64
  # gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
65
  # "likely ones (specified in num_beams)", value=7),
@@ -87,46 +103,53 @@ common_input_component_list = [
87
  "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
88
  "If is set to True, the generate function will use stochastic sampling, which means that it will randomly" +
89
  " select a word from the probability distribution at each step. This results in a more diverse and creative" +
90
- " output, but it might also introduce errors and inconsistencies ", value=True)
91
- ]
92
- input_component_list=copy.deepcopy(common_input_component_list)
93
- input_component_list.append(gr.Textbox(label="model", lines=3, value="original_model",visible=False))
94
- common_output_component_list=[gr.Textbox(label="output response", lines=30)]
95
- common_examples=[
96
- ["What is death?",5,0.2,1.5,0.9,True], # The first example
97
- ["One of the best teachers in all of life turns out to be what?",5,0.2,1.5,0.9,True], # The second example
98
- ["what is your most meaningful relationship?",5,0.2,1.5,0.9,True], # The third example
99
- ["What actually gives life meaning?",5,0.2,1.5,0.9,True]
100
- ]
101
- examples = copy.deepcopy(common_examples)
102
- print(examples)
103
- for example in examples:
104
- example.append("original_model")
105
- print(examples)
106
- input_component_list=copy.deepcopy(common_input_component_list)
107
- input_component_list.append(gr.Textbox(label="model", lines=3, value="untethered_model",visible=False))
108
- output_component_list = copy.deepcopy(common_output_component_list)
109
- interface_original = gr.Interface(fn=create_response,
110
- title="original",
111
- description="original language model, no fine tuning",
112
- examples=examples,
113
- inputs=input_component_list,
114
- outputs=output_component_list
115
  )
116
  examples = copy.deepcopy(common_examples)
117
  print(examples)
118
  for example in examples:
119
  example.append("untethered_model")
120
  print(examples)
121
- input_component_list=copy.deepcopy(common_input_component_list)
122
- input_component_list.append(gr.Textbox(label="model", lines=3, value="untethered_paraphrased_model",visible=False))
123
- output_component_list = copy.deepcopy(common_output_component_list)
124
  interface_untethered_model = gr.Interface(fn=create_response,
125
  title="untethered model",
126
  description="language model fine tuned with'The Untethered Soul' chapter 17",
127
  examples=examples,
128
- inputs=input_component_list,
129
- outputs=output_component_list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  )
131
 
132
  examples = copy.deepcopy(common_examples)
@@ -134,15 +157,42 @@ print(examples)
134
  for example in examples:
135
  example.append("untethered_paraphrased_model")
136
  print(examples)
137
- input_component_list=copy.deepcopy(common_input_component_list)
138
- input_component_list.append(gr.Textbox(label="model", lines=3, value="untethered_model",visible=False))
139
- output_component_list = copy.deepcopy(common_output_component_list)
140
  interface_untethered_paraphrased_model = gr.Interface(fn=create_response,
141
  title="untethered paraphrased_model",
142
  description="language model fine tuned with'The Untethered Soul' chapter 17 paraphrased",
143
  examples=examples,
144
- inputs=input_component_list,
145
- outputs= output_component_list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  )
147
 
148
 
 
59
  outputs=outputs+output+"<br/>"
60
  return outputs
61
 
62
+
63
+ common_examples=[
64
+ ["What is death?",5,0.2,1.5,0.9,True], # The first example
65
+ ["One of the best teachers in all of life turns out to be what?",5,0.2,1.5,0.9,True], # The second example
66
+ ["what is your most meaningful relationship?",5,0.2,1.5,0.9,True], # The third example
67
+ ["What actually gives life meaning?",5,0.2,1.5,0.9,True]
68
+ ]
69
+ examples = copy.deepcopy(common_examples)
70
+ print(examples)
71
+ for example in examples:
72
+ example.append("original_model")
73
+ print(examples)
74
+ interface_original = gr.Interface(fn=create_response,
75
+ title="original",
76
+ description="original language model, no fine tuning",
77
+ examples=examples,
78
+ inputs=[
79
  gr.Textbox(label="input text here", lines=3),
80
  # gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
81
  # "likely ones (specified in num_beams)", value=7),
 
103
  "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
104
  "If is set to True, the generate function will use stochastic sampling, which means that it will randomly" +
105
  " select a word from the probability distribution at each step. This results in a more diverse and creative" +
106
+ " output, but it might also introduce errors and inconsistencies ", value=True),
107
+ gr.Textbox(label="model", lines=3, value="original_model",visible=False)
108
+ ],
109
+ outputs=[gr.Textbox(label="output response", lines=30)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  )
111
  examples = copy.deepcopy(common_examples)
112
  print(examples)
113
  for example in examples:
114
  example.append("untethered_model")
115
  print(examples)
116
+
 
 
117
  interface_untethered_model = gr.Interface(fn=create_response,
118
  title="untethered model",
119
  description="language model fine tuned with'The Untethered Soul' chapter 17",
120
  examples=examples,
121
+ inputs=[
122
+ gr.Textbox(label="input text here", lines=3),
123
+ # gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
124
+ # "likely ones (specified in num_beams)", value=7),
125
+ gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
126
+ value=5),
127
+ gr.Number(
128
+ label="temperature (decimal) controls the creativity or randomness of the output. A higher temperature" +
129
+ " (e.g., 0.9) results in more diverse and creative output, while a lower temperature (e.g., 0.2)" +
130
+ " makes the output more deterministic and focused",
131
+ value=0.2),
132
+ gr.Number(label="repetition_penalty (decimal) penalizes words that have already appeared in the output, " +
133
+ "making them less likely to be generated again. A higher repetition_penalty (e.g., 1.5) results" +
134
+ "in more varied and non-repetitive output.",
135
+ value=1.5),
136
+ gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
137
+ " to reach a certain threshold",
138
+ value=0.9),
139
+ # gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
140
+ # "This means that only the tokens with the highest probabilities are considered for sampling" +
141
+ # "This reduces the diversity of the generated sequences, "+
142
+ # "but also makes them more likely to be coherent and fluent.",
143
+ # value=50),
144
+ gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
145
+ "which means that it will select the word with the highest probability at each step. " +
146
+ "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
147
+ "If is set to True, the generate function will use stochastic sampling, which means that it will randomly" +
148
+ " select a word from the probability distribution at each step. This results in a more diverse and creative" +
149
+ " output, but it might also introduce errors and inconsistencies ", value=True),
150
+ gr.Textbox(label="model", lines=3, value="untethered_model",visible=False)
151
+ ],
152
+ outputs=[gr.Textbox(label="output response", lines=30)]
153
  )
154
 
155
  examples = copy.deepcopy(common_examples)
 
157
  for example in examples:
158
  example.append("untethered_paraphrased_model")
159
  print(examples)
 
 
 
160
  interface_untethered_paraphrased_model = gr.Interface(fn=create_response,
161
  title="untethered paraphrased_model",
162
  description="language model fine tuned with'The Untethered Soul' chapter 17 paraphrased",
163
  examples=examples,
164
+ inputs=[
165
+ gr.Textbox(label="input text here", lines=3),
166
+ # gr.Number(label="num_beams (integer) explores the specified number of possible outputs and selects the most " +
167
+ # "likely ones (specified in num_beams)", value=7),
168
+ gr.Number(label="num_return_sequences (integer) the number of outputs selected from num_beams possible output",
169
+ value=5),
170
+ gr.Number(
171
+ label="temperature (decimal) controls the creativity or randomness of the output. A higher temperature" +
172
+ " (e.g., 0.9) results in more diverse and creative output, while a lower temperature (e.g., 0.2)" +
173
+ " makes the output more deterministic and focused",
174
+ value=0.2),
175
+ gr.Number(label="repetition_penalty (decimal) penalizes words that have already appeared in the output, " +
176
+ "making them less likely to be generated again. A higher repetition_penalty (e.g., 1.5) results" +
177
+ "in more varied and non-repetitive output.",
178
+ value=1.5),
179
+ gr.Number(label="top_p (decimal) the model will only consider the words that have a high enough probability" +
180
+ " to reach a certain threshold",
181
+ value=0.9),
182
+ # gr.Number(label="top_k (integer) The number of highest probability vocabulary word will be considered" +
183
+ # "This means that only the tokens with the highest probabilities are considered for sampling" +
184
+ # "This reduces the diversity of the generated sequences, "+
185
+ # "but also makes them more likely to be coherent and fluent.",
186
+ # value=50),
187
+ gr.Checkbox(label="do_sample. If is set to False, num_return_sequences must be 1 because the generate function will use greedy decoding, " +
188
+ "which means that it will select the word with the highest probability at each step. " +
189
+ "This results in a deterministic and fluent output, but it might also lack diversity and creativity" +
190
+ "If is set to True, the generate function will use stochastic sampling, which means that it will randomly" +
191
+ " select a word from the probability distribution at each step. This results in a more diverse and creative" +
192
+ " output, but it might also introduce errors and inconsistencies ", value=True),
193
+ gr.Textbox(label="model", lines=3, value="untethered_paraphrased_model",visible=False)
194
+ ],
195
+ outputs= [gr.Textbox(label="output response", lines=30)]
196
  )
197
 
198