|
|
|
|
|
import gradio as gr |
|
|
|
from settings import ( |
|
DEFAULT_IMAGE_RESOLUTION, |
|
DEFAULT_NUM_IMAGES, |
|
MAX_IMAGE_RESOLUTION, |
|
MAX_NUM_IMAGES, |
|
MAX_SEED, |
|
) |
|
from utils import randomize_seed_fn |
|
|
|
examples = [] |
|
|
|
|
|
def create_demo(process): |
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image() |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button("Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
preprocessor_name = gr.Radio( |
|
label="Preprocessor", |
|
choices=["DPT"], |
|
type="value", |
|
value="DPT", |
|
) |
|
num_samples = gr.Slider( |
|
label="Number of images", |
|
minimum=1, |
|
maximum=MAX_NUM_IMAGES, |
|
value=DEFAULT_NUM_IMAGES, |
|
step=1, |
|
) |
|
image_resolution = gr.Slider( |
|
label="Image resolution", |
|
minimum=256, |
|
maximum=MAX_IMAGE_RESOLUTION, |
|
value=DEFAULT_IMAGE_RESOLUTION, |
|
step=256, |
|
) |
|
preprocess_resolution = gr.Slider( |
|
label="Preprocess resolution", |
|
minimum=128, |
|
maximum=512, |
|
value=384, |
|
step=1, |
|
) |
|
num_steps = gr.Slider( |
|
label="Number of steps", |
|
minimum=1, |
|
maximum=100, |
|
value=20, |
|
step=1, |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.1, |
|
maximum=30.0, |
|
value=7.5, |
|
step=0.1, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0 |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
a_prompt = gr.Textbox( |
|
label="Additional prompt", |
|
value="high-quality, extremely detailed, 4K", |
|
) |
|
n_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", |
|
) |
|
with gr.Column(): |
|
result = gr.Gallery( |
|
label="Output", show_label=False, columns=2, object_fit="scale-down" |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[ |
|
image, |
|
prompt, |
|
guidance_scale, |
|
seed, |
|
], |
|
outputs=result, |
|
fn=process, |
|
) |
|
|
|
inputs = [ |
|
image, |
|
prompt, |
|
a_prompt, |
|
n_prompt, |
|
num_samples, |
|
image_resolution, |
|
preprocess_resolution, |
|
num_steps, |
|
guidance_scale, |
|
seed, |
|
preprocessor_name, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=process, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=process, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="depth", |
|
) |
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
from model import Model |
|
|
|
model = Model(task_name="depth") |
|
demo = create_demo(model.process_depth) |
|
demo.queue().launch() |
|
|