ysharma HF staff commited on
Commit
63e68a4
·
verified ·
1 Parent(s): bf6e699

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ from transformers import AutoModelForCausalLM
4
+ from transformers import AutoProcessor
5
+ from transformers import TextIteratorStreamer
6
+ import time
7
+ from threading import Thread
8
+ import torch
9
+
10
+ model_id = "microsoft/Phi-3-vision-128k-instruct"
11
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")
12
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
13
+ model.to("cuda:0")
14
+
15
+ PLACEHOLDER = """
16
+ <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
17
+ <img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/microsoft/Phi-3-vision-128k-instruct.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
18
+ <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Microsoft's Phi3-Vision-128k-Context</h1>
19
+ <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Phi-3-Vision is a 4.2B parameter multimodal model that brings together language and vision capabilities.</p>
20
+ </div>
21
+ """
22
+
23
+ #@spaces.GPU
24
+ def bot_streaming(message, history):
25
+ print(f'message is - {message}')
26
+ print(f'history is - {history}')
27
+ if message["files"]:
28
+ # message["files"][-1] is a Dict or just a string
29
+ if type(message["files"][-1]) == dict:
30
+ image = message["files"][-1]["path"]
31
+ else:
32
+ image = message["files"][-1]
33
+ else:
34
+ # if there's no image uploaded for this turn, look for images in the past turns
35
+ # kept inside tuples, take the last one
36
+ for hist in history:
37
+ if type(hist[0]) == tuple:
38
+ image = hist[0][0]
39
+ try:
40
+ if image is None:
41
+ # Handle the case where image is None
42
+ raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.")
43
+ except NameError:
44
+ # Handle the case where 'image' is not defined at all
45
+ raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.")
46
+
47
+ conversation = []
48
+ flag=False
49
+ for user, assistant in history:
50
+ if assistant is None:
51
+ #pass
52
+ flag=True
53
+ conversation.extend([{"role": "user", "content":""}])
54
+ continue
55
+ if flag==True:
56
+ conversation[0]['content'] = f"<|image_1|>\n{user}"
57
+ conversation.extend([{"role": "assistant", "content": assistant}])
58
+ flag=False
59
+ continue
60
+ #conversation += f"""User:<image>\n{user} Falcon:{assistant} """
61
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
62
+
63
+ if len(history) == 0:
64
+ conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
65
+ else:
66
+ conversation.append({"role": "user", "content": message['text']})
67
+ print(f"prompt is -\n{conversation}")
68
+ #prompt = f"""User:<image>\n{message['text']} Falcon:"""
69
+ prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
70
+ image = Image.open(image)
71
+ inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
72
+ #inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
73
+
74
+ streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) # "eos_token_id":processor.tokenizer.eos_token_id})
75
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)
76
+
77
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
78
+ thread.start()
79
+
80
+ buffer = ""
81
+ for new_text in streamer:
82
+ # find <|eot_id|> and remove it from the new_text
83
+ #if "<|eot_id|>" in new_text:
84
+ # new_text = new_text.split("<|eot_id|>")[0]
85
+ buffer += new_text
86
+ yield buffer
87
+
88
+
89
+ chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
90
+ chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
91
+ with gr.Blocks(fill_height=True, ) as demo:
92
+ gr.ChatInterface(
93
+ fn=bot_streaming,
94
+ title="FalconVLM",
95
+ examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
96
+ {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
97
+ description="Try [tiiuae/falcon-11B-VLM](https://huggingface.co/tiiuae/falcon-11B-vlm). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
98
+ stop_btn="Stop Generation",
99
+ multimodal=True,
100
+ textbox=chat_input,
101
+ chatbot=chatbot,
102
+ cache_examples=False,
103
+ )
104
+
105
+ demo.queue()
106
+ demo.launch(debug=True, quiet=True)