import shutil import cv2 from PIL import Image import streamlit as st from transformers import AutoModelForObjectDetection, AutoFeatureExtractor import torch import matplotlib.pyplot as plt from stqdm import stqdm from pathlib import Path # Load the model best_model_path = "zoheb/yolos-small-balloon" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") feature_extractor = AutoFeatureExtractor.from_pretrained(best_model_path, size=512, max_size=864) model_pt = AutoModelForObjectDetection.from_pretrained(best_model_path).to(device) # colors for visualization COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] # Convert Video to Frames def video_to_frames(video, dir): cap = cv2.VideoCapture(str(video)) success, image = cap.read() frame_count = 0 while success: frameId = int(round(cap.get(1))) # current frame number if frameId % 5 == 0: cv2.imwrite(f"{str(dir)}/frame_{frame_count}.jpg", image) frame_count += 1 success, image = cap.read() cap.release() #print (f"No. of frames {frame_count}") # for output bounding box post-processing def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) # rescale bboxes def rescale_bboxes(out_bbox, size): img_w, img_h = size b = box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b # Save predicted frame def save_results(pil_img, prob, boxes, mod_img_path): plt.figure(figsize=(18,10)) plt.imshow(pil_img) id2label = {0: 'balloon'} ax = plt.gca() colors = COLORS * 100 for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors): ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=c, linewidth=3)) cl = p.argmax() text = f'{id2label[cl.item()]}: {p[cl]:0.2f}' ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) plt.axis('off') plt.tight_layout(pad=0) plt.savefig(mod_img_path, transparent=True) plt.close() # Save predictions def save_predictions(image, outputs, mod_img_path, threshold=0.9): # keep only predictions with confidence >= threshold probas = outputs.logits.softmax(-1)[0, :, :-1] keep = probas.max(-1).values > threshold # convert predicted boxes from [0; 1] to image scales bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size) # save results save_results(image, probas[keep], bboxes_scaled, mod_img_path) # Predict on frames def predict_on_frames(dir, mod_dir): files = [f for f in dir.glob('*.jpg') if f.is_file()] #for sorting the file names properly files.sort(key = lambda x: int(x.stem[6:])) for i in stqdm(range(len(files)), desc="Generating... this is a slow task"): filename = Path(dir, files[i]) #print(filename) #reading each files img = Image.open(str(filename)) # extract features img_ftr = feature_extractor(images=img, return_tensors="pt") pixel_values = img_ftr["pixel_values"].to(device) # forward pass to get class logits and bounding boxes outputs = model_pt(pixel_values=pixel_values) mod_img_path = Path(mod_dir, files[i].name) save_predictions(img, outputs, mod_img_path) # Convert frames to video def frames_to_video(dir, path, fps=5): frame_array = [] files = [f for f in dir.glob('*.jpg') if f.is_file()] #for sorting the file names properly files.sort(key = lambda x: int(x.stem[6:])) for file in files: filename = Path(dir, file) #reading each files img = cv2.imread(str(filename)) height, width, _ = img.shape size = (width, height) #print(filename) #inserting the frames into an image array frame_array.append(img) out = cv2.VideoWriter(str(path), cv2.VideoWriter_fourcc(*'DIVX'), fps, size) for item in frame_array: # writing to a image array out.write(item) out.release() # Main if __name__=='__main__': st.title('Detect Balloons using YOLOS') # All dir and Files BASE_DIR = Path(__file__).parent.absolute() FRAMES_DIR = Path(BASE_DIR, "extracted_images") MOD_DIR = Path(BASE_DIR, "modified_images") if FRAMES_DIR.exists() and FRAMES_DIR.is_dir(): shutil.rmtree(FRAMES_DIR) FRAMES_DIR.mkdir(parents=True, exist_ok=True) if MOD_DIR.exists() and MOD_DIR.is_dir(): shutil.rmtree(MOD_DIR) MOD_DIR.mkdir(parents=True, exist_ok=True) generated_video = Path(BASE_DIR, "final_video.mp4") # Upload the video uploaded_file = st.file_uploader("Upload a small video containing Balloons", type=["mp4"]) if uploaded_file is not None: st.video(uploaded_file) vid = uploaded_file.name st.info(f'Uploaded {vid}') with open(vid, mode='wb') as f: f.write(uploaded_file.read()) uploaded_video = Path(BASE_DIR, vid) # Detect balloon in the frames and generate video try: video_to_frames(uploaded_video, FRAMES_DIR) predict_on_frames(FRAMES_DIR, MOD_DIR) frames_to_video(MOD_DIR, generated_video) st.success("Successfully Generated!!") # Video file Generated video_file = open(str(generated_video), 'rb') video_bytes = video_file.read() st.video(video_bytes) st.download_button('Download the Video', video_bytes, file_name=generated_video.name) except Exception as e: st.error(f"Could not convert the file due to {e}") else: st.info('File Not Uploaded Yet!!!')