saya commited on
Commit
c9492f8
·
0 Parent(s):

Duplicate from sayashi/sovits-models

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +34 -0
  2. .gitignore +382 -0
  3. LICENSE +407 -0
  4. README.md +12 -0
  5. app.py +90 -0
  6. cluster/__init__.py +29 -0
  7. cluster/__pycache__/__init__.cpython-38.pyc +0 -0
  8. cluster/train_cluster.py +89 -0
  9. configs/config.json +64 -0
  10. cvec/checkpoint_best_legacy_500.pt +3 -0
  11. hubert/__init__.py +0 -0
  12. hubert/__pycache__/__init__.cpython-38.pyc +0 -0
  13. hubert/__pycache__/hubert_model.cpython-38.pyc +0 -0
  14. hubert/checkpoint_best_legacy_500.pt +3 -0
  15. hubert/hubert_model.py +222 -0
  16. hubert/hubert_model_onnx.py +217 -0
  17. inference/__init__.py +0 -0
  18. inference/__pycache__/__init__.cpython-38.pyc +0 -0
  19. inference/__pycache__/infer_tool.cpython-38.pyc +0 -0
  20. inference/__pycache__/slicer.cpython-38.pyc +0 -0
  21. inference/chunks_temp.json +1 -0
  22. inference/infer_tool.py +273 -0
  23. inference/infer_tool_grad.py +160 -0
  24. inference/slicer.py +142 -0
  25. inference_main.py +100 -0
  26. models.py +420 -0
  27. models/alice/alice.pth +3 -0
  28. models/alice/config.json +93 -0
  29. models/alice/cover.png +0 -0
  30. models/goldship/config.json +93 -0
  31. models/goldship/cover.png +0 -0
  32. models/goldship/goldship.pth +3 -0
  33. models/rudolf/config.json +93 -0
  34. models/rudolf/cover.png +0 -0
  35. models/rudolf/rudolf.pth +3 -0
  36. models/tannhauser/config.json +93 -0
  37. models/tannhauser/cover.png +0 -0
  38. models/tannhauser/tannhauser.pth +3 -0
  39. models/teio/config.json +93 -0
  40. models/teio/cover.png +0 -0
  41. models/teio/teio.pth +3 -0
  42. modules/__init__.py +0 -0
  43. modules/__pycache__/__init__.cpython-38.pyc +0 -0
  44. modules/__pycache__/attentions.cpython-38.pyc +0 -0
  45. modules/__pycache__/commons.cpython-38.pyc +0 -0
  46. modules/__pycache__/modules.cpython-38.pyc +0 -0
  47. modules/attentions.py +349 -0
  48. modules/commons.py +188 -0
  49. modules/ddsp.py +190 -0
  50. modules/losses.py +61 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Ignore Visual Studio temporary files, build results, and
2
+ ## files generated by popular Visual Studio add-ons.
3
+ ##
4
+ ## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
5
+
6
+ # User-specific files
7
+ *.rsuser
8
+ *.suo
9
+ *.user
10
+ *.userosscache
11
+ *.sln.docstates
12
+
13
+ # User-specific files (MonoDevelop/Xamarin Studio)
14
+ *.userprefs
15
+
16
+ # Mono auto generated files
17
+ mono_crash.*
18
+
19
+ # Build results
20
+ [Dd]ebug/
21
+ [Dd]ebugPublic/
22
+ [Rr]elease/
23
+ [Rr]eleases/
24
+ x64/
25
+ x86/
26
+ [Ww][Ii][Nn]32/
27
+ [Aa][Rr][Mm]/
28
+ [Aa][Rr][Mm]64/
29
+ bld/
30
+ [Bb]in/
31
+ [Oo]bj/
32
+ [Oo]ut/
33
+ [Ll]og/
34
+ [Ll]ogs/
35
+
36
+ # Visual Studio 2015/2017 cache/options directory
37
+ .vs/
38
+ # Uncomment if you have tasks that create the project's static files in wwwroot
39
+ #wwwroot/
40
+
41
+ # Visual Studio 2017 auto generated files
42
+ Generated\ Files/
43
+
44
+ # MSTest test Results
45
+ [Tt]est[Rr]esult*/
46
+ [Bb]uild[Ll]og.*
47
+
48
+ # NUnit
49
+ *.VisualState.xml
50
+ TestResult.xml
51
+ nunit-*.xml
52
+
53
+ # Build Results of an ATL Project
54
+ [Dd]ebugPS/
55
+ [Rr]eleasePS/
56
+ dlldata.c
57
+
58
+ # Benchmark Results
59
+ BenchmarkDotNet.Artifacts/
60
+
61
+ # .NET Core
62
+ project.lock.json
63
+ project.fragment.lock.json
64
+ artifacts/
65
+
66
+ # ASP.NET Scaffolding
67
+ ScaffoldingReadMe.txt
68
+
69
+ # StyleCop
70
+ StyleCopReport.xml
71
+
72
+ # Files built by Visual Studio
73
+ *_i.c
74
+ *_p.c
75
+ *_h.h
76
+ *.ilk
77
+ *.meta
78
+ *.obj
79
+ *.iobj
80
+ *.pch
81
+ *.pdb
82
+ *.ipdb
83
+ *.pgc
84
+ *.pgd
85
+ *.rsp
86
+ *.sbr
87
+ *.tlb
88
+ *.tli
89
+ *.tlh
90
+ *.tmp
91
+ *.tmp_proj
92
+ *_wpftmp.csproj
93
+ *.log
94
+ *.vspscc
95
+ *.vssscc
96
+ .builds
97
+ *.pidb
98
+ *.svclog
99
+ *.scc
100
+
101
+ # Chutzpah Test files
102
+ _Chutzpah*
103
+
104
+ # Visual C++ cache files
105
+ ipch/
106
+ *.aps
107
+ *.ncb
108
+ *.opendb
109
+ *.opensdf
110
+ *.sdf
111
+ *.cachefile
112
+ *.VC.db
113
+ *.VC.VC.opendb
114
+
115
+ # Visual Studio profiler
116
+ *.psess
117
+ *.vsp
118
+ *.vspx
119
+ *.sap
120
+
121
+ # Visual Studio Trace Files
122
+ *.e2e
123
+
124
+ # TFS 2012 Local Workspace
125
+ $tf/
126
+
127
+ # Guidance Automation Toolkit
128
+ *.gpState
129
+
130
+ # ReSharper is a .NET coding add-in
131
+ _ReSharper*/
132
+ *.[Rr]e[Ss]harper
133
+ *.DotSettings.user
134
+
135
+ # TeamCity is a build add-in
136
+ _TeamCity*
137
+
138
+ # DotCover is a Code Coverage Tool
139
+ *.dotCover
140
+
141
+ # AxoCover is a Code Coverage Tool
142
+ .axoCover/*
143
+ !.axoCover/settings.json
144
+
145
+ # Coverlet is a free, cross platform Code Coverage Tool
146
+ coverage*.json
147
+ coverage*.xml
148
+ coverage*.info
149
+
150
+ # Visual Studio code coverage results
151
+ *.coverage
152
+ *.coveragexml
153
+
154
+ # NCrunch
155
+ _NCrunch_*
156
+ .*crunch*.local.xml
157
+ nCrunchTemp_*
158
+
159
+ # MightyMoose
160
+ *.mm.*
161
+ AutoTest.Net/
162
+
163
+ # Web workbench (sass)
164
+ .sass-cache/
165
+
166
+ # Installshield output folder
167
+ [Ee]xpress/
168
+
169
+ # DocProject is a documentation generator add-in
170
+ DocProject/buildhelp/
171
+ DocProject/Help/*.HxT
172
+ DocProject/Help/*.HxC
173
+ DocProject/Help/*.hhc
174
+ DocProject/Help/*.hhk
175
+ DocProject/Help/*.hhp
176
+ DocProject/Help/Html2
177
+ DocProject/Help/html
178
+
179
+ # Click-Once directory
180
+ publish/
181
+
182
+ # Publish Web Output
183
+ *.[Pp]ublish.xml
184
+ *.azurePubxml
185
+ # Note: Comment the next line if you want to checkin your web deploy settings,
186
+ # but database connection strings (with potential passwords) will be unencrypted
187
+ *.pubxml
188
+ *.publishproj
189
+
190
+ # Microsoft Azure Web App publish settings. Comment the next line if you want to
191
+ # checkin your Azure Web App publish settings, but sensitive information contained
192
+ # in these scripts will be unencrypted
193
+ PublishScripts/
194
+
195
+ # NuGet Packages
196
+ *.nupkg
197
+ # NuGet Symbol Packages
198
+ *.snupkg
199
+ # The packages folder can be ignored because of Package Restore
200
+ **/[Pp]ackages/*
201
+ # except build/, which is used as an MSBuild target.
202
+ !**/[Pp]ackages/build/
203
+ # Uncomment if necessary however generally it will be regenerated when needed
204
+ #!**/[Pp]ackages/repositories.config
205
+ # NuGet v3's project.json files produces more ignorable files
206
+ *.nuget.props
207
+ *.nuget.targets
208
+
209
+ # Microsoft Azure Build Output
210
+ csx/
211
+ *.build.csdef
212
+
213
+ # Microsoft Azure Emulator
214
+ ecf/
215
+ rcf/
216
+
217
+ # Windows Store app package directories and files
218
+ AppPackages/
219
+ BundleArtifacts/
220
+ Package.StoreAssociation.xml
221
+ _pkginfo.txt
222
+ *.appx
223
+ *.appxbundle
224
+ *.appxupload
225
+
226
+ # Visual Studio cache files
227
+ # files ending in .cache can be ignored
228
+ *.[Cc]ache
229
+ # but keep track of directories ending in .cache
230
+ !?*.[Cc]ache/
231
+
232
+ # Others
233
+ ClientBin/
234
+ ~$*
235
+ *~
236
+ *.dbmdl
237
+ *.dbproj.schemaview
238
+ *.jfm
239
+ *.pfx
240
+ *.publishsettings
241
+ orleans.codegen.cs
242
+
243
+ # Including strong name files can present a security risk
244
+ # (https://github.com/github/gitignore/pull/2483#issue-259490424)
245
+ #*.snk
246
+
247
+ # Since there are multiple workflows, uncomment next line to ignore bower_components
248
+ # (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
249
+ #bower_components/
250
+
251
+ # RIA/Silverlight projects
252
+ Generated_Code/
253
+
254
+ # Backup & report files from converting an old project file
255
+ # to a newer Visual Studio version. Backup files are not needed,
256
+ # because we have git ;-)
257
+ _UpgradeReport_Files/
258
+ Backup*/
259
+ UpgradeLog*.XML
260
+ UpgradeLog*.htm
261
+ ServiceFabricBackup/
262
+ *.rptproj.bak
263
+
264
+ # SQL Server files
265
+ *.mdf
266
+ *.ldf
267
+ *.ndf
268
+
269
+ # Business Intelligence projects
270
+ *.rdl.data
271
+ *.bim.layout
272
+ *.bim_*.settings
273
+ *.rptproj.rsuser
274
+ *- [Bb]ackup.rdl
275
+ *- [Bb]ackup ([0-9]).rdl
276
+ *- [Bb]ackup ([0-9][0-9]).rdl
277
+
278
+ # Microsoft Fakes
279
+ FakesAssemblies/
280
+
281
+ # GhostDoc plugin setting file
282
+ *.GhostDoc.xml
283
+
284
+ # Node.js Tools for Visual Studio
285
+ .ntvs_analysis.dat
286
+ node_modules/
287
+
288
+ # Visual Studio 6 build log
289
+ *.plg
290
+
291
+ # Visual Studio 6 workspace options file
292
+ *.opt
293
+
294
+ # Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
295
+ *.vbw
296
+
297
+ # Visual Studio LightSwitch build output
298
+ **/*.HTMLClient/GeneratedArtifacts
299
+ **/*.DesktopClient/GeneratedArtifacts
300
+ **/*.DesktopClient/ModelManifest.xml
301
+ **/*.Server/GeneratedArtifacts
302
+ **/*.Server/ModelManifest.xml
303
+ _Pvt_Extensions
304
+
305
+ # Paket dependency manager
306
+ .paket/paket.exe
307
+ paket-files/
308
+
309
+ # FAKE - F# Make
310
+ .fake/
311
+
312
+ # CodeRush personal settings
313
+ .cr/personal
314
+
315
+ # Python Tools for Visual Studio (PTVS)
316
+ __pycache__/
317
+
318
+
319
+ # Cake - Uncomment if you are using it
320
+ # tools/**
321
+ # !tools/packages.config
322
+
323
+ # Tabs Studio
324
+ *.tss
325
+
326
+ # Telerik's JustMock configuration file
327
+ *.jmconfig
328
+
329
+ # BizTalk build output
330
+ *.btp.cs
331
+ *.btm.cs
332
+ *.odx.cs
333
+ *.xsd.cs
334
+
335
+ # OpenCover UI analysis results
336
+ OpenCover/
337
+
338
+ # Azure Stream Analytics local run output
339
+ ASALocalRun/
340
+
341
+ # MSBuild Binary and Structured Log
342
+ *.binlog
343
+
344
+ # NVidia Nsight GPU debugger configuration file
345
+ *.nvuser
346
+
347
+ # MFractors (Xamarin productivity tool) working folder
348
+ .mfractor/
349
+
350
+ # Local History for Visual Studio
351
+ .localhistory/
352
+
353
+ # BeatPulse healthcheck temp database
354
+ healthchecksdb
355
+
356
+ # Backup folder for Package Reference Convert tool in Visual Studio 2017
357
+ MigrationBackup/
358
+
359
+ # Ionide (cross platform F# VS Code tools) working folder
360
+ .ionide/
361
+
362
+ # Fody - auto-generated XML schema
363
+ FodyWeavers.xsd
364
+
365
+ # build
366
+ build
367
+ monotonic_align/core.c
368
+ *.o
369
+ *.so
370
+ *.dll
371
+
372
+ # data
373
+ /config.json
374
+ /*.pth
375
+ *.wav
376
+ /monotonic_align/monotonic_align
377
+ /resources
378
+ /MoeGoe.spec
379
+ /dist/MoeGoe
380
+ /dist
381
+
382
+ .idea
LICENSE ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution-NonCommercial 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution-NonCommercial 4.0 International Public
58
+ License
59
+
60
+ By exercising the Licensed Rights (defined below), You accept and agree
61
+ to be bound by the terms and conditions of this Creative Commons
62
+ Attribution-NonCommercial 4.0 International Public License ("Public
63
+ License"). To the extent this Public License may be interpreted as a
64
+ contract, You are granted the Licensed Rights in consideration of Your
65
+ acceptance of these terms and conditions, and the Licensor grants You
66
+ such rights in consideration of benefits the Licensor receives from
67
+ making the Licensed Material available under these terms and
68
+ conditions.
69
+
70
+
71
+ Section 1 -- Definitions.
72
+
73
+ a. Adapted Material means material subject to Copyright and Similar
74
+ Rights that is derived from or based upon the Licensed Material
75
+ and in which the Licensed Material is translated, altered,
76
+ arranged, transformed, or otherwise modified in a manner requiring
77
+ permission under the Copyright and Similar Rights held by the
78
+ Licensor. For purposes of this Public License, where the Licensed
79
+ Material is a musical work, performance, or sound recording,
80
+ Adapted Material is always produced where the Licensed Material is
81
+ synched in timed relation with a moving image.
82
+
83
+ b. Adapter's License means the license You apply to Your Copyright
84
+ and Similar Rights in Your contributions to Adapted Material in
85
+ accordance with the terms and conditions of this Public License.
86
+
87
+ c. Copyright and Similar Rights means copyright and/or similar rights
88
+ closely related to copyright including, without limitation,
89
+ performance, broadcast, sound recording, and Sui Generis Database
90
+ Rights, without regard to how the rights are labeled or
91
+ categorized. For purposes of this Public License, the rights
92
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
93
+ Rights.
94
+ d. Effective Technological Measures means those measures that, in the
95
+ absence of proper authority, may not be circumvented under laws
96
+ fulfilling obligations under Article 11 of the WIPO Copyright
97
+ Treaty adopted on December 20, 1996, and/or similar international
98
+ agreements.
99
+
100
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
101
+ any other exception or limitation to Copyright and Similar Rights
102
+ that applies to Your use of the Licensed Material.
103
+
104
+ f. Licensed Material means the artistic or literary work, database,
105
+ or other material to which the Licensor applied this Public
106
+ License.
107
+
108
+ g. Licensed Rights means the rights granted to You subject to the
109
+ terms and conditions of this Public License, which are limited to
110
+ all Copyright and Similar Rights that apply to Your use of the
111
+ Licensed Material and that the Licensor has authority to license.
112
+
113
+ h. Licensor means the individual(s) or entity(ies) granting rights
114
+ under this Public License.
115
+
116
+ i. NonCommercial means not primarily intended for or directed towards
117
+ commercial advantage or monetary compensation. For purposes of
118
+ this Public License, the exchange of the Licensed Material for
119
+ other material subject to Copyright and Similar Rights by digital
120
+ file-sharing or similar means is NonCommercial provided there is
121
+ no payment of monetary compensation in connection with the
122
+ exchange.
123
+
124
+ j. Share means to provide material to the public by any means or
125
+ process that requires permission under the Licensed Rights, such
126
+ as reproduction, public display, public performance, distribution,
127
+ dissemination, communication, or importation, and to make material
128
+ available to the public including in ways that members of the
129
+ public may access the material from a place and at a time
130
+ individually chosen by them.
131
+
132
+ k. Sui Generis Database Rights means rights other than copyright
133
+ resulting from Directive 96/9/EC of the European Parliament and of
134
+ the Council of 11 March 1996 on the legal protection of databases,
135
+ as amended and/or succeeded, as well as other essentially
136
+ equivalent rights anywhere in the world.
137
+
138
+ l. You means the individual or entity exercising the Licensed Rights
139
+ under this Public License. Your has a corresponding meaning.
140
+
141
+
142
+ Section 2 -- Scope.
143
+
144
+ a. License grant.
145
+
146
+ 1. Subject to the terms and conditions of this Public License,
147
+ the Licensor hereby grants You a worldwide, royalty-free,
148
+ non-sublicensable, non-exclusive, irrevocable license to
149
+ exercise the Licensed Rights in the Licensed Material to:
150
+
151
+ a. reproduce and Share the Licensed Material, in whole or
152
+ in part, for NonCommercial purposes only; and
153
+
154
+ b. produce, reproduce, and Share Adapted Material for
155
+ NonCommercial purposes only.
156
+
157
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
158
+ Exceptions and Limitations apply to Your use, this Public
159
+ License does not apply, and You do not need to comply with
160
+ its terms and conditions.
161
+
162
+ 3. Term. The term of this Public License is specified in Section
163
+ 6(a).
164
+
165
+ 4. Media and formats; technical modifications allowed. The
166
+ Licensor authorizes You to exercise the Licensed Rights in
167
+ all media and formats whether now known or hereafter created,
168
+ and to make technical modifications necessary to do so. The
169
+ Licensor waives and/or agrees not to assert any right or
170
+ authority to forbid You from making technical modifications
171
+ necessary to exercise the Licensed Rights, including
172
+ technical modifications necessary to circumvent Effective
173
+ Technological Measures. For purposes of this Public License,
174
+ simply making modifications authorized by this Section 2(a)
175
+ (4) never produces Adapted Material.
176
+
177
+ 5. Downstream recipients.
178
+
179
+ a. Offer from the Licensor -- Licensed Material. Every
180
+ recipient of the Licensed Material automatically
181
+ receives an offer from the Licensor to exercise the
182
+ Licensed Rights under the terms and conditions of this
183
+ Public License.
184
+
185
+ b. No downstream restrictions. You may not offer or impose
186
+ any additional or different terms or conditions on, or
187
+ apply any Effective Technological Measures to, the
188
+ Licensed Material if doing so restricts exercise of the
189
+ Licensed Rights by any recipient of the Licensed
190
+ Material.
191
+
192
+ 6. No endorsement. Nothing in this Public License constitutes or
193
+ may be construed as permission to assert or imply that You
194
+ are, or that Your use of the Licensed Material is, connected
195
+ with, or sponsored, endorsed, or granted official status by,
196
+ the Licensor or others designated to receive attribution as
197
+ provided in Section 3(a)(1)(A)(i).
198
+
199
+ b. Other rights.
200
+
201
+ 1. Moral rights, such as the right of integrity, are not
202
+ licensed under this Public License, nor are publicity,
203
+ privacy, and/or other similar personality rights; however, to
204
+ the extent possible, the Licensor waives and/or agrees not to
205
+ assert any such rights held by the Licensor to the limited
206
+ extent necessary to allow You to exercise the Licensed
207
+ Rights, but not otherwise.
208
+
209
+ 2. Patent and trademark rights are not licensed under this
210
+ Public License.
211
+
212
+ 3. To the extent possible, the Licensor waives any right to
213
+ collect royalties from You for the exercise of the Licensed
214
+ Rights, whether directly or through a collecting society
215
+ under any voluntary or waivable statutory or compulsory
216
+ licensing scheme. In all other cases the Licensor expressly
217
+ reserves any right to collect such royalties, including when
218
+ the Licensed Material is used other than for NonCommercial
219
+ purposes.
220
+
221
+
222
+ Section 3 -- License Conditions.
223
+
224
+ Your exercise of the Licensed Rights is expressly made subject to the
225
+ following conditions.
226
+
227
+ a. Attribution.
228
+
229
+ 1. If You Share the Licensed Material (including in modified
230
+ form), You must:
231
+
232
+ a. retain the following if it is supplied by the Licensor
233
+ with the Licensed Material:
234
+
235
+ i. identification of the creator(s) of the Licensed
236
+ Material and any others designated to receive
237
+ attribution, in any reasonable manner requested by
238
+ the Licensor (including by pseudonym if
239
+ designated);
240
+
241
+ ii. a copyright notice;
242
+
243
+ iii. a notice that refers to this Public License;
244
+
245
+ iv. a notice that refers to the disclaimer of
246
+ warranties;
247
+
248
+ v. a URI or hyperlink to the Licensed Material to the
249
+ extent reasonably practicable;
250
+
251
+ b. indicate if You modified the Licensed Material and
252
+ retain an indication of any previous modifications; and
253
+
254
+ c. indicate the Licensed Material is licensed under this
255
+ Public License, and include the text of, or the URI or
256
+ hyperlink to, this Public License.
257
+
258
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
259
+ reasonable manner based on the medium, means, and context in
260
+ which You Share the Licensed Material. For example, it may be
261
+ reasonable to satisfy the conditions by providing a URI or
262
+ hyperlink to a resource that includes the required
263
+ information.
264
+
265
+ 3. If requested by the Licensor, You must remove any of the
266
+ information required by Section 3(a)(1)(A) to the extent
267
+ reasonably practicable.
268
+
269
+ 4. If You Share Adapted Material You produce, the Adapter's
270
+ License You apply must not prevent recipients of the Adapted
271
+ Material from complying with this Public License.
272
+
273
+
274
+ Section 4 -- Sui Generis Database Rights.
275
+
276
+ Where the Licensed Rights include Sui Generis Database Rights that
277
+ apply to Your use of the Licensed Material:
278
+
279
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
280
+ to extract, reuse, reproduce, and Share all or a substantial
281
+ portion of the contents of the database for NonCommercial purposes
282
+ only;
283
+
284
+ b. if You include all or a substantial portion of the database
285
+ contents in a database in which You have Sui Generis Database
286
+ Rights, then the database in which You have Sui Generis Database
287
+ Rights (but not its individual contents) is Adapted Material; and
288
+
289
+ c. You must comply with the conditions in Section 3(a) if You Share
290
+ all or a substantial portion of the contents of the database.
291
+
292
+ For the avoidance of doubt, this Section 4 supplements and does not
293
+ replace Your obligations under this Public License where the Licensed
294
+ Rights include other Copyright and Similar Rights.
295
+
296
+
297
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
298
+
299
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
300
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
301
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
302
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
303
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
304
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
305
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
306
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
307
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
308
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
309
+
310
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
311
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
312
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
313
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
314
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
315
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
316
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
317
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
318
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
319
+
320
+ c. The disclaimer of warranties and limitation of liability provided
321
+ above shall be interpreted in a manner that, to the extent
322
+ possible, most closely approximates an absolute disclaimer and
323
+ waiver of all liability.
324
+
325
+
326
+ Section 6 -- Term and Termination.
327
+
328
+ a. This Public License applies for the term of the Copyright and
329
+ Similar Rights licensed here. However, if You fail to comply with
330
+ this Public License, then Your rights under this Public License
331
+ terminate automatically.
332
+
333
+ b. Where Your right to use the Licensed Material has terminated under
334
+ Section 6(a), it reinstates:
335
+
336
+ 1. automatically as of the date the violation is cured, provided
337
+ it is cured within 30 days of Your discovery of the
338
+ violation; or
339
+
340
+ 2. upon express reinstatement by the Licensor.
341
+
342
+ For the avoidance of doubt, this Section 6(b) does not affect any
343
+ right the Licensor may have to seek remedies for Your violations
344
+ of this Public License.
345
+
346
+ c. For the avoidance of doubt, the Licensor may also offer the
347
+ Licensed Material under separate terms or conditions or stop
348
+ distributing the Licensed Material at any time; however, doing so
349
+ will not terminate this Public License.
350
+
351
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
352
+ License.
353
+
354
+
355
+ Section 7 -- Other Terms and Conditions.
356
+
357
+ a. The Licensor shall not be bound by any additional or different
358
+ terms or conditions communicated by You unless expressly agreed.
359
+
360
+ b. Any arrangements, understandings, or agreements regarding the
361
+ Licensed Material not stated herein are separate from and
362
+ independent of the terms and conditions of this Public License.
363
+
364
+
365
+ Section 8 -- Interpretation.
366
+
367
+ a. For the avoidance of doubt, this Public License does not, and
368
+ shall not be interpreted to, reduce, limit, restrict, or impose
369
+ conditions on any use of the Licensed Material that could lawfully
370
+ be made without permission under this Public License.
371
+
372
+ b. To the extent possible, if any provision of this Public License is
373
+ deemed unenforceable, it shall be automatically reformed to the
374
+ minimum extent necessary to make it enforceable. If the provision
375
+ cannot be reformed, it shall be severed from this Public License
376
+ without affecting the enforceability of the remaining terms and
377
+ conditions.
378
+
379
+ c. No term or condition of this Public License will be waived and no
380
+ failure to comply consented to unless expressly agreed to by the
381
+ Licensor.
382
+
383
+ d. Nothing in this Public License constitutes or may be interpreted
384
+ as a limitation upon, or waiver of, any privileges and immunities
385
+ that apply to the Licensor or You, including from the legal
386
+ processes of any jurisdiction or authority.
387
+
388
+ =======================================================================
389
+
390
+ Creative Commons is not a party to its public
391
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
392
+ its public licenses to material it publishes and in those instances
393
+ will be considered the “Licensor.” The text of the Creative Commons
394
+ public licenses is dedicated to the public domain under the CC0 Public
395
+ Domain Dedication. Except for the limited purpose of indicating that
396
+ material is shared under a Creative Commons public license or as
397
+ otherwise permitted by the Creative Commons policies published at
398
+ creativecommons.org/policies, Creative Commons does not authorize the
399
+ use of the trademark "Creative Commons" or any other trademark or logo
400
+ of Creative Commons without its prior written consent including,
401
+ without limitation, in connection with any unauthorized modifications
402
+ to any of its public licenses or any other arrangements,
403
+ understandings, or agreements concerning use of licensed material. For
404
+ the avoidance of doubt, this paragraph does not form part of the
405
+ public licenses.
406
+
407
+ Creative Commons may be contacted at creativecommons.org.
README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Sovits Models
3
+ emoji: 🎙️
4
+ colorFrom: gray
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 3.18.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ duplicated_from: sayashi/sovits-models
12
+ ---
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import librosa
4
+ import numpy as np
5
+ import utils
6
+ from inference.infer_tool import Svc
7
+ import logging
8
+ import webbrowser
9
+ import argparse
10
+ import gradio.processing_utils as gr_processing_utils
11
+ logging.getLogger('numba').setLevel(logging.WARNING)
12
+ logging.getLogger('markdown_it').setLevel(logging.WARNING)
13
+ logging.getLogger('urllib3').setLevel(logging.WARNING)
14
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
15
+
16
+ limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
17
+
18
+ audio_postprocess_ori = gr.Audio.postprocess
19
+
20
+ def audio_postprocess(self, y):
21
+ data = audio_postprocess_ori(self, y)
22
+ if data is None:
23
+ return None
24
+ return gr_processing_utils.encode_url_or_file_to_base64(data["name"])
25
+
26
+
27
+ gr.Audio.postprocess = audio_postprocess
28
+ def create_vc_fn(model, sid):
29
+ def vc_fn(input_audio, vc_transform, auto_f0):
30
+ if input_audio is None:
31
+ return "You need to upload an audio", None
32
+ sampling_rate, audio = input_audio
33
+ duration = audio.shape[0] / sampling_rate
34
+ if duration > 30 and limitation:
35
+ return "Please upload an audio file that is less than 30 seconds. If you need to generate a longer audio file, please use Colab.", None
36
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
37
+ if len(audio.shape) > 1:
38
+ audio = librosa.to_mono(audio.transpose(1, 0))
39
+ if sampling_rate != 44100:
40
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=44100)
41
+ out_audio, out_sr = model.infer(sid, vc_transform, audio, auto_predict_f0=auto_f0)
42
+ model.clear_empty()
43
+ return "Success", (44100, out_audio.cpu().numpy())
44
+ return vc_fn
45
+
46
+ if __name__ == '__main__':
47
+ parser = argparse.ArgumentParser()
48
+ parser.add_argument('--device', type=str, default='cpu')
49
+ parser.add_argument('--api', action="store_true", default=False)
50
+ parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
51
+ parser.add_argument("--colab", action="store_true", default=False, help="share gradio app")
52
+ args = parser.parse_args()
53
+ hubert_model = utils.get_hubert_model().to(args.device)
54
+ models = []
55
+ for f in os.listdir("models"):
56
+ name = f
57
+ model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model)
58
+ cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
59
+ models.append((name, cover, create_vc_fn(model, name)))
60
+ with gr.Blocks() as app:
61
+ gr.Markdown(
62
+ "# <center> Sovits Models\n"
63
+ "## <center> The input audio should be clean and pure voice without background music.\n"
64
+ "![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n"
65
+ "[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)"
66
+ " without queue and length limitation.\n\n"
67
+ "[Original Repo](https://github.com/innnky/so-vits-svc/tree/4.0)"
68
+ )
69
+ with gr.Tabs():
70
+ for (name, cover, vc_fn) in models:
71
+ with gr.TabItem(name):
72
+ with gr.Row():
73
+ gr.Markdown(
74
+ '<div align="center">'
75
+ f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
76
+ '</div>'
77
+ )
78
+ with gr.Row():
79
+ with gr.Column():
80
+ vc_input = gr.Audio(label="Input audio"+' (less than 45 seconds)' if limitation else '')
81
+ vc_transform = gr.Number(label="vc_transform", value=0)
82
+ auto_f0 = gr.Checkbox(label="auto_f0", value=False)
83
+ vc_submit = gr.Button("Generate", variant="primary")
84
+ with gr.Column():
85
+ vc_output1 = gr.Textbox(label="Output Message")
86
+ vc_output2 = gr.Audio(label="Output Audio")
87
+ vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0], [vc_output1, vc_output2])
88
+ if args.colab:
89
+ webbrowser.open("http://127.0.0.1:7860")
90
+ app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
cluster/__init__.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from sklearn.cluster import KMeans
4
+
5
+ def get_cluster_model(ckpt_path):
6
+ checkpoint = torch.load(ckpt_path)
7
+ kmeans_dict = {}
8
+ for spk, ckpt in checkpoint.items():
9
+ km = KMeans(ckpt["n_features_in_"])
10
+ km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
11
+ km.__dict__["_n_threads"] = ckpt["_n_threads"]
12
+ km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
13
+ kmeans_dict[spk] = km
14
+ return kmeans_dict
15
+
16
+ def get_cluster_result(model, x, speaker):
17
+ """
18
+ x: np.array [t, 256]
19
+ return cluster class result
20
+ """
21
+ return model[speaker].predict(x)
22
+
23
+ def get_cluster_center_result(model, x,speaker):
24
+ """x: np.array [t, 256]"""
25
+ predict = model[speaker].predict(x)
26
+ return model[speaker].cluster_centers_[predict]
27
+
28
+ def get_center(model, x,speaker):
29
+ return model[speaker].cluster_centers_[x]
cluster/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (1.09 kB). View file
 
cluster/train_cluster.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from glob import glob
3
+ from pathlib import Path
4
+ import torch
5
+ import logging
6
+ import argparse
7
+ import torch
8
+ import numpy as np
9
+ from sklearn.cluster import KMeans, MiniBatchKMeans
10
+ import tqdm
11
+ logging.basicConfig(level=logging.INFO)
12
+ logger = logging.getLogger(__name__)
13
+ import time
14
+ import random
15
+
16
+ def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False):
17
+
18
+ logger.info(f"Loading features from {in_dir}")
19
+ features = []
20
+ nums = 0
21
+ for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
22
+ features.append(torch.load(path).squeeze(0).numpy().T)
23
+ # print(features[-1].shape)
24
+ features = np.concatenate(features, axis=0)
25
+ print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
26
+ features = features.astype(np.float32)
27
+ logger.info(f"Clustering features of shape: {features.shape}")
28
+ t = time.time()
29
+ if use_minibatch:
30
+ kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
31
+ else:
32
+ kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
33
+ print(time.time()-t, "s")
34
+
35
+ x = {
36
+ "n_features_in_": kmeans.n_features_in_,
37
+ "_n_threads": kmeans._n_threads,
38
+ "cluster_centers_": kmeans.cluster_centers_,
39
+ }
40
+ print("end")
41
+
42
+ return x
43
+
44
+
45
+ if __name__ == "__main__":
46
+
47
+ parser = argparse.ArgumentParser()
48
+ parser.add_argument('--dataset', type=Path, default="./dataset/44k",
49
+ help='path of training data directory')
50
+ parser.add_argument('--output', type=Path, default="logs/44k",
51
+ help='path of model output directory')
52
+
53
+ args = parser.parse_args()
54
+
55
+ checkpoint_dir = args.output
56
+ dataset = args.dataset
57
+ n_clusters = 10000
58
+
59
+ ckpt = {}
60
+ for spk in os.listdir(dataset):
61
+ if os.path.isdir(dataset/spk):
62
+ print(f"train kmeans for {spk}...")
63
+ in_dir = dataset/spk
64
+ x = train_cluster(in_dir, n_clusters, verbose=False)
65
+ ckpt[spk] = x
66
+
67
+ checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
68
+ checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
69
+ torch.save(
70
+ ckpt,
71
+ checkpoint_path,
72
+ )
73
+
74
+
75
+ # import cluster
76
+ # for spk in tqdm.tqdm(os.listdir("dataset")):
77
+ # if os.path.isdir(f"dataset/{spk}"):
78
+ # print(f"start kmeans inference for {spk}...")
79
+ # for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)):
80
+ # mel_path = feature_path.replace(".discrete.npy",".mel.npy")
81
+ # mel_spectrogram = np.load(mel_path)
82
+ # feature_len = mel_spectrogram.shape[-1]
83
+ # c = np.load(feature_path)
84
+ # c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy()
85
+ # feature = c.T
86
+ # feature_class = cluster.get_cluster_result(feature, spk)
87
+ # np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)
88
+
89
+
configs/config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 10240,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 512,
23
+ "port": "8001"
24
+ },
25
+ "data": {
26
+ "training_files": "filelists/train.txt",
27
+ "validation_files": "filelists/val.txt",
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 44100,
30
+ "filter_length": 2048,
31
+ "hop_length": 512,
32
+ "win_length": 2048,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": 22050
36
+ },
37
+ "model": {
38
+ "inter_channels": 192,
39
+ "hidden_channels": 192,
40
+ "filter_channels": 768,
41
+ "n_heads": 2,
42
+ "n_layers": 6,
43
+ "kernel_size": 3,
44
+ "p_dropout": 0.1,
45
+ "resblock": "1",
46
+ "resblock_kernel_sizes": [3,7,11],
47
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
48
+ "upsample_rates": [ 8, 8, 2, 2, 2],
49
+ "upsample_initial_channel": 512,
50
+ "upsample_kernel_sizes": [16,16, 4, 4, 4],
51
+ "n_layers_q": 3,
52
+ "use_spectral_norm": false,
53
+ "gin_channels": 256,
54
+ "ssl_dim": 256,
55
+ "n_speakers": 200
56
+ },
57
+ "spk": {
58
+ "jishuang": 0,
59
+ "huiyu": 1,
60
+ "nen": 2,
61
+ "paimon": 3,
62
+ "yunhao": 4
63
+ }
64
+ }
cvec/checkpoint_best_legacy_500.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:294a2e8c98136070a999e040ec98dfa5a99b88a7938181c56cc2ab0e2f6ce0e8
3
+ size 48501067
hubert/__init__.py ADDED
File without changes
hubert/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (134 Bytes). View file
 
hubert/__pycache__/hubert_model.cpython-38.pyc ADDED
Binary file (7.58 kB). View file
 
hubert/checkpoint_best_legacy_500.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60d936ec5a566776fc392e69ad8b630d14eb588111233fe313436e200a7b187b
3
+ size 1330114945
hubert/hubert_model.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
58
+ x, mask = self.encode(x)
59
+ x = self.proj(x)
60
+ logits = self.logits(x)
61
+ return logits, mask
62
+
63
+
64
+ class HubertSoft(Hubert):
65
+ def __init__(self):
66
+ super().__init__()
67
+
68
+ @torch.inference_mode()
69
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
70
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
71
+ x, _ = self.encode(wav)
72
+ return self.proj(x)
73
+
74
+
75
+ class FeatureExtractor(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
79
+ self.norm0 = nn.GroupNorm(512, 512)
80
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
81
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
82
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
83
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
84
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
85
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
86
+
87
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
88
+ x = t_func.gelu(self.norm0(self.conv0(x)))
89
+ x = t_func.gelu(self.conv1(x))
90
+ x = t_func.gelu(self.conv2(x))
91
+ x = t_func.gelu(self.conv3(x))
92
+ x = t_func.gelu(self.conv4(x))
93
+ x = t_func.gelu(self.conv5(x))
94
+ x = t_func.gelu(self.conv6(x))
95
+ return x
96
+
97
+
98
+ class FeatureProjection(nn.Module):
99
+ def __init__(self):
100
+ super().__init__()
101
+ self.norm = nn.LayerNorm(512)
102
+ self.projection = nn.Linear(512, 768)
103
+ self.dropout = nn.Dropout(0.1)
104
+
105
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
106
+ x = self.norm(x)
107
+ x = self.projection(x)
108
+ x = self.dropout(x)
109
+ return x
110
+
111
+
112
+ class PositionalConvEmbedding(nn.Module):
113
+ def __init__(self):
114
+ super().__init__()
115
+ self.conv = nn.Conv1d(
116
+ 768,
117
+ 768,
118
+ kernel_size=128,
119
+ padding=128 // 2,
120
+ groups=16,
121
+ )
122
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
123
+
124
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
125
+ x = self.conv(x.transpose(1, 2))
126
+ x = t_func.gelu(x[:, :, :-1])
127
+ return x.transpose(1, 2)
128
+
129
+
130
+ class TransformerEncoder(nn.Module):
131
+ def __init__(
132
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
133
+ ) -> None:
134
+ super(TransformerEncoder, self).__init__()
135
+ self.layers = nn.ModuleList(
136
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
137
+ )
138
+ self.num_layers = num_layers
139
+
140
+ def forward(
141
+ self,
142
+ src: torch.Tensor,
143
+ mask: torch.Tensor = None,
144
+ src_key_padding_mask: torch.Tensor = None,
145
+ output_layer: Optional[int] = None,
146
+ ) -> torch.Tensor:
147
+ output = src
148
+ for layer in self.layers[:output_layer]:
149
+ output = layer(
150
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
151
+ )
152
+ return output
153
+
154
+
155
+ def _compute_mask(
156
+ shape: Tuple[int, int],
157
+ mask_prob: float,
158
+ mask_length: int,
159
+ device: torch.device,
160
+ min_masks: int = 0,
161
+ ) -> torch.Tensor:
162
+ batch_size, sequence_length = shape
163
+
164
+ if mask_length < 1:
165
+ raise ValueError("`mask_length` has to be bigger than 0.")
166
+
167
+ if mask_length > sequence_length:
168
+ raise ValueError(
169
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
170
+ )
171
+
172
+ # compute number of masked spans in batch
173
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
174
+ num_masked_spans = max(num_masked_spans, min_masks)
175
+
176
+ # make sure num masked indices <= sequence_length
177
+ if num_masked_spans * mask_length > sequence_length:
178
+ num_masked_spans = sequence_length // mask_length
179
+
180
+ # SpecAugment mask to fill
181
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
182
+
183
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
184
+ uniform_dist = torch.ones(
185
+ (batch_size, sequence_length - (mask_length - 1)), device=device
186
+ )
187
+
188
+ # get random indices to mask
189
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
190
+
191
+ # expand masked indices to masked spans
192
+ mask_indices = (
193
+ mask_indices.unsqueeze(dim=-1)
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ offsets = (
198
+ torch.arange(mask_length, device=device)[None, None, :]
199
+ .expand((batch_size, num_masked_spans, mask_length))
200
+ .reshape(batch_size, num_masked_spans * mask_length)
201
+ )
202
+ mask_idxs = mask_indices + offsets
203
+
204
+ # scatter indices to mask
205
+ mask = mask.scatter(1, mask_idxs, True)
206
+
207
+ return mask
208
+
209
+
210
+ def hubert_soft(
211
+ path: str,
212
+ ) -> HubertSoft:
213
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
214
+ Args:
215
+ path (str): path of a pretrained model
216
+ """
217
+ hubert = HubertSoft()
218
+ checkpoint = torch.load(path)
219
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
220
+ hubert.load_state_dict(checkpoint)
221
+ hubert.eval()
222
+ return hubert
hubert/hubert_model_onnx.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+
58
+ class HubertSoft(Hubert):
59
+ def __init__(self):
60
+ super().__init__()
61
+
62
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
63
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
64
+ x, _ = self.encode(wav)
65
+ return self.proj(x)
66
+
67
+ def forward(self, x):
68
+ return self.units(x)
69
+
70
+ class FeatureExtractor(nn.Module):
71
+ def __init__(self):
72
+ super().__init__()
73
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
74
+ self.norm0 = nn.GroupNorm(512, 512)
75
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
76
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
77
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
78
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
79
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
80
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
81
+
82
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
83
+ x = t_func.gelu(self.norm0(self.conv0(x)))
84
+ x = t_func.gelu(self.conv1(x))
85
+ x = t_func.gelu(self.conv2(x))
86
+ x = t_func.gelu(self.conv3(x))
87
+ x = t_func.gelu(self.conv4(x))
88
+ x = t_func.gelu(self.conv5(x))
89
+ x = t_func.gelu(self.conv6(x))
90
+ return x
91
+
92
+
93
+ class FeatureProjection(nn.Module):
94
+ def __init__(self):
95
+ super().__init__()
96
+ self.norm = nn.LayerNorm(512)
97
+ self.projection = nn.Linear(512, 768)
98
+ self.dropout = nn.Dropout(0.1)
99
+
100
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
101
+ x = self.norm(x)
102
+ x = self.projection(x)
103
+ x = self.dropout(x)
104
+ return x
105
+
106
+
107
+ class PositionalConvEmbedding(nn.Module):
108
+ def __init__(self):
109
+ super().__init__()
110
+ self.conv = nn.Conv1d(
111
+ 768,
112
+ 768,
113
+ kernel_size=128,
114
+ padding=128 // 2,
115
+ groups=16,
116
+ )
117
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
118
+
119
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
120
+ x = self.conv(x.transpose(1, 2))
121
+ x = t_func.gelu(x[:, :, :-1])
122
+ return x.transpose(1, 2)
123
+
124
+
125
+ class TransformerEncoder(nn.Module):
126
+ def __init__(
127
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
128
+ ) -> None:
129
+ super(TransformerEncoder, self).__init__()
130
+ self.layers = nn.ModuleList(
131
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
132
+ )
133
+ self.num_layers = num_layers
134
+
135
+ def forward(
136
+ self,
137
+ src: torch.Tensor,
138
+ mask: torch.Tensor = None,
139
+ src_key_padding_mask: torch.Tensor = None,
140
+ output_layer: Optional[int] = None,
141
+ ) -> torch.Tensor:
142
+ output = src
143
+ for layer in self.layers[:output_layer]:
144
+ output = layer(
145
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
146
+ )
147
+ return output
148
+
149
+
150
+ def _compute_mask(
151
+ shape: Tuple[int, int],
152
+ mask_prob: float,
153
+ mask_length: int,
154
+ device: torch.device,
155
+ min_masks: int = 0,
156
+ ) -> torch.Tensor:
157
+ batch_size, sequence_length = shape
158
+
159
+ if mask_length < 1:
160
+ raise ValueError("`mask_length` has to be bigger than 0.")
161
+
162
+ if mask_length > sequence_length:
163
+ raise ValueError(
164
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
165
+ )
166
+
167
+ # compute number of masked spans in batch
168
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
169
+ num_masked_spans = max(num_masked_spans, min_masks)
170
+
171
+ # make sure num masked indices <= sequence_length
172
+ if num_masked_spans * mask_length > sequence_length:
173
+ num_masked_spans = sequence_length // mask_length
174
+
175
+ # SpecAugment mask to fill
176
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
177
+
178
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
179
+ uniform_dist = torch.ones(
180
+ (batch_size, sequence_length - (mask_length - 1)), device=device
181
+ )
182
+
183
+ # get random indices to mask
184
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
185
+
186
+ # expand masked indices to masked spans
187
+ mask_indices = (
188
+ mask_indices.unsqueeze(dim=-1)
189
+ .expand((batch_size, num_masked_spans, mask_length))
190
+ .reshape(batch_size, num_masked_spans * mask_length)
191
+ )
192
+ offsets = (
193
+ torch.arange(mask_length, device=device)[None, None, :]
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ mask_idxs = mask_indices + offsets
198
+
199
+ # scatter indices to mask
200
+ mask = mask.scatter(1, mask_idxs, True)
201
+
202
+ return mask
203
+
204
+
205
+ def hubert_soft(
206
+ path: str,
207
+ ) -> HubertSoft:
208
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
209
+ Args:
210
+ path (str): path of a pretrained model
211
+ """
212
+ hubert = HubertSoft()
213
+ checkpoint = torch.load(path)
214
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
215
+ hubert.load_state_dict(checkpoint)
216
+ hubert.eval()
217
+ return hubert
inference/__init__.py ADDED
File without changes
inference/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (157 Bytes). View file
 
inference/__pycache__/infer_tool.cpython-38.pyc ADDED
Binary file (9.23 kB). View file
 
inference/__pycache__/slicer.cpython-38.pyc ADDED
Binary file (3.86 kB). View file
 
inference/chunks_temp.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"info": "temp_dict"}
inference/infer_tool.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import io
3
+ import json
4
+ import logging
5
+ import os
6
+ import time
7
+ from pathlib import Path
8
+ from inference import slicer
9
+
10
+ import librosa
11
+ import numpy as np
12
+ # import onnxruntime
13
+ import parselmouth
14
+ import soundfile
15
+ import torch
16
+ import torchaudio
17
+
18
+ import cluster
19
+ from hubert import hubert_model
20
+ import utils
21
+ from models import SynthesizerTrn
22
+
23
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
24
+
25
+
26
+ def read_temp(file_name):
27
+ if not os.path.exists(file_name):
28
+ with open(file_name, "w") as f:
29
+ f.write(json.dumps({"info": "temp_dict"}))
30
+ return {}
31
+ else:
32
+ try:
33
+ with open(file_name, "r") as f:
34
+ data = f.read()
35
+ data_dict = json.loads(data)
36
+ if os.path.getsize(file_name) > 50 * 1024 * 1024:
37
+ f_name = file_name.replace("\\", "/").split("/")[-1]
38
+ print(f"clean {f_name}")
39
+ for wav_hash in list(data_dict.keys()):
40
+ if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
41
+ del data_dict[wav_hash]
42
+ except Exception as e:
43
+ print(e)
44
+ print(f"{file_name} error,auto rebuild file")
45
+ data_dict = {"info": "temp_dict"}
46
+ return data_dict
47
+
48
+
49
+ def write_temp(file_name, data):
50
+ with open(file_name, "w") as f:
51
+ f.write(json.dumps(data))
52
+
53
+
54
+ def timeit(func):
55
+ def run(*args, **kwargs):
56
+ t = time.time()
57
+ res = func(*args, **kwargs)
58
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
59
+ return res
60
+
61
+ return run
62
+
63
+
64
+ def format_wav(audio_path):
65
+ if Path(audio_path).suffix == '.wav':
66
+ return
67
+ raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
68
+ soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
69
+
70
+
71
+ def get_end_file(dir_path, end):
72
+ file_lists = []
73
+ for root, dirs, files in os.walk(dir_path):
74
+ files = [f for f in files if f[0] != '.']
75
+ dirs[:] = [d for d in dirs if d[0] != '.']
76
+ for f_file in files:
77
+ if f_file.endswith(end):
78
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
79
+ return file_lists
80
+
81
+
82
+ def get_md5(content):
83
+ return hashlib.new("md5", content).hexdigest()
84
+
85
+ def fill_a_to_b(a, b):
86
+ if len(a) < len(b):
87
+ for _ in range(0, len(b) - len(a)):
88
+ a.append(a[0])
89
+
90
+ def mkdir(paths: list):
91
+ for path in paths:
92
+ if not os.path.exists(path):
93
+ os.mkdir(path)
94
+
95
+ def pad_array(arr, target_length):
96
+ current_length = arr.shape[0]
97
+ if current_length >= target_length:
98
+ return arr
99
+ else:
100
+ pad_width = target_length - current_length
101
+ pad_left = pad_width // 2
102
+ pad_right = pad_width - pad_left
103
+ padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
104
+ return padded_arr
105
+
106
+ def split_list_by_n(list_collection, n, pre=0):
107
+ for i in range(0, len(list_collection), n):
108
+ yield list_collection[i-pre if i-pre>=0 else i: i + n]
109
+
110
+
111
+ class Svc(object):
112
+ def __init__(self, net_g_path, config_path, hubert_model,
113
+ device=None,
114
+ cluster_model_path="logs/44k/kmeans_10000.pt"):
115
+ self.net_g_path = net_g_path
116
+ if device is None:
117
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
118
+ else:
119
+ self.dev = torch.device(device)
120
+ self.net_g_ms = None
121
+ self.hps_ms = utils.get_hparams_from_file(config_path)
122
+ self.target_sample = self.hps_ms.data.sampling_rate
123
+ self.hop_size = self.hps_ms.data.hop_length
124
+ self.spk2id = self.hps_ms.spk
125
+ # 加载hubert
126
+ self.hubert_model = hubert_model
127
+ self.load_model()
128
+ if os.path.exists(cluster_model_path):
129
+ self.cluster_model = cluster.get_cluster_model(cluster_model_path)
130
+
131
+ def load_model(self):
132
+ # 获取模型配置
133
+ self.net_g_ms = SynthesizerTrn(
134
+ self.hps_ms.data.filter_length // 2 + 1,
135
+ self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
136
+ **self.hps_ms.model)
137
+ _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
138
+ if "half" in self.net_g_path and torch.cuda.is_available():
139
+ _ = self.net_g_ms.half().eval().to(self.dev)
140
+ else:
141
+ _ = self.net_g_ms.eval().to(self.dev)
142
+
143
+
144
+
145
+ def get_unit_f0(self, wav, tran, cluster_infer_ratio, speaker):
146
+ f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
147
+ f0, uv = utils.interpolate_f0(f0)
148
+ f0 = torch.FloatTensor(f0)
149
+ uv = torch.FloatTensor(uv)
150
+ f0 = f0 * 2 ** (tran / 12)
151
+ f0 = f0.unsqueeze(0).to(self.dev)
152
+ uv = uv.unsqueeze(0).to(self.dev)
153
+
154
+ wav16k = librosa.resample(wav, orig_sr=44100, target_sr=16000)
155
+ wav16k = torch.from_numpy(wav16k).to(self.dev)
156
+ c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
157
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
158
+
159
+ if cluster_infer_ratio !=0:
160
+ cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
161
+ cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
162
+ c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
163
+
164
+ c = c.unsqueeze(0)
165
+ return c, f0, uv
166
+
167
+ def infer(self, speaker, tran, raw_wav,
168
+ cluster_infer_ratio=0,
169
+ auto_predict_f0=False,
170
+ noice_scale=0.4):
171
+ speaker_id = self.spk2id.__dict__.get(speaker)
172
+ if not speaker_id and type(speaker) is int:
173
+ if len(self.spk2id.__dict__) >= speaker:
174
+ speaker_id = speaker
175
+ sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
176
+ c, f0, uv = self.get_unit_f0(raw_wav, tran, cluster_infer_ratio, speaker)
177
+ if "half" in self.net_g_path and torch.cuda.is_available():
178
+ c = c.half()
179
+ with torch.no_grad():
180
+ start = time.time()
181
+ audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float()
182
+ use_time = time.time() - start
183
+ print("vits use time:{}".format(use_time))
184
+ return audio, audio.shape[-1]
185
+
186
+ def clear_empty(self):
187
+ # 清理显存
188
+ torch.cuda.empty_cache()
189
+
190
+ def slice_inference(self,raw_audio_path, spk, tran, slice_db,cluster_infer_ratio, auto_predict_f0,noice_scale, pad_seconds=0.5, clip_seconds=0,lg_num=0,lgr_num =0.75):
191
+ wav_path = raw_audio_path
192
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
193
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
194
+ per_size = int(clip_seconds*audio_sr)
195
+ lg_size = int(lg_num*audio_sr)
196
+ lg_size_r = int(lg_size*lgr_num)
197
+ lg_size_c_l = (lg_size-lg_size_r)//2
198
+ lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
199
+ lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
200
+
201
+ audio = []
202
+ for (slice_tag, data) in audio_data:
203
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
204
+ # padd
205
+ length = int(np.ceil(len(data) / audio_sr * self.target_sample))
206
+ if slice_tag:
207
+ print('jump empty segment')
208
+ _audio = np.zeros(length)
209
+ audio.extend(list(pad_array(_audio, length)))
210
+ continue
211
+ if per_size != 0:
212
+ datas = split_list_by_n(data, per_size,lg_size)
213
+ else:
214
+ datas = [data]
215
+ for k,dat in enumerate(datas):
216
+ per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length
217
+ if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
218
+ # padd
219
+ pad_len = int(audio_sr * pad_seconds)
220
+ dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
221
+ raw_path = io.BytesIO()
222
+ soundfile.write(raw_path, dat, audio_sr, format="wav")
223
+ raw_path.seek(0)
224
+ out_audio, out_sr = self.infer(spk, tran, raw_path,
225
+ cluster_infer_ratio=cluster_infer_ratio,
226
+ auto_predict_f0=auto_predict_f0,
227
+ noice_scale=noice_scale
228
+ )
229
+ _audio = out_audio.cpu().numpy()
230
+ pad_len = int(self.target_sample * pad_seconds)
231
+ _audio = _audio[pad_len:-pad_len]
232
+ _audio = pad_array(_audio, per_length)
233
+ if lg_size!=0 and k!=0:
234
+ lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:]
235
+ lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size]
236
+ lg_pre = lg1*(1-lg)+lg2*lg
237
+ audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size]
238
+ audio.extend(lg_pre)
239
+ _audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:]
240
+ audio.extend(list(_audio))
241
+ return np.array(audio)
242
+
243
+ class RealTimeVC:
244
+ def __init__(self):
245
+ self.last_chunk = None
246
+ self.last_o = None
247
+ self.chunk_len = 16000 # 区块长度
248
+ self.pre_len = 3840 # 交叉淡化长度,640的倍数
249
+
250
+ """输入输出都是1维numpy 音频波形数组"""
251
+
252
+ def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
253
+ import maad
254
+ audio, sr = torchaudio.load(input_wav_path)
255
+ audio = audio.cpu().numpy()[0]
256
+ temp_wav = io.BytesIO()
257
+ if self.last_chunk is None:
258
+ input_wav_path.seek(0)
259
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
260
+ audio = audio.cpu().numpy()
261
+ self.last_chunk = audio[-self.pre_len:]
262
+ self.last_o = audio
263
+ return audio[-self.chunk_len:]
264
+ else:
265
+ audio = np.concatenate([self.last_chunk, audio])
266
+ soundfile.write(temp_wav, audio, sr, format="wav")
267
+ temp_wav.seek(0)
268
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
269
+ audio = audio.cpu().numpy()
270
+ ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
271
+ self.last_chunk = audio[-self.pre_len:]
272
+ self.last_o = audio
273
+ return ret[self.chunk_len:2 * self.chunk_len]
inference/infer_tool_grad.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import json
3
+ import logging
4
+ import os
5
+ import time
6
+ from pathlib import Path
7
+ import io
8
+ import librosa
9
+ import maad
10
+ import numpy as np
11
+ from inference import slicer
12
+ import parselmouth
13
+ import soundfile
14
+ import torch
15
+ import torchaudio
16
+
17
+ from hubert import hubert_model
18
+ import utils
19
+ from models import SynthesizerTrn
20
+ logging.getLogger('numba').setLevel(logging.WARNING)
21
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
22
+
23
+ def resize2d_f0(x, target_len):
24
+ source = np.array(x)
25
+ source[source < 0.001] = np.nan
26
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
27
+ source)
28
+ res = np.nan_to_num(target)
29
+ return res
30
+
31
+ def get_f0(x, p_len,f0_up_key=0):
32
+
33
+ time_step = 160 / 16000 * 1000
34
+ f0_min = 50
35
+ f0_max = 1100
36
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
37
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
38
+
39
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
40
+ time_step=time_step / 1000, voicing_threshold=0.6,
41
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
42
+
43
+ pad_size=(p_len - len(f0) + 1) // 2
44
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
45
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
46
+
47
+ f0 *= pow(2, f0_up_key / 12)
48
+ f0_mel = 1127 * np.log(1 + f0 / 700)
49
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
50
+ f0_mel[f0_mel <= 1] = 1
51
+ f0_mel[f0_mel > 255] = 255
52
+ f0_coarse = np.rint(f0_mel).astype(np.int)
53
+ return f0_coarse, f0
54
+
55
+ def clean_pitch(input_pitch):
56
+ num_nan = np.sum(input_pitch == 1)
57
+ if num_nan / len(input_pitch) > 0.9:
58
+ input_pitch[input_pitch != 1] = 1
59
+ return input_pitch
60
+
61
+
62
+ def plt_pitch(input_pitch):
63
+ input_pitch = input_pitch.astype(float)
64
+ input_pitch[input_pitch == 1] = np.nan
65
+ return input_pitch
66
+
67
+
68
+ def f0_to_pitch(ff):
69
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
70
+ return f0_pitch
71
+
72
+
73
+ def fill_a_to_b(a, b):
74
+ if len(a) < len(b):
75
+ for _ in range(0, len(b) - len(a)):
76
+ a.append(a[0])
77
+
78
+
79
+ def mkdir(paths: list):
80
+ for path in paths:
81
+ if not os.path.exists(path):
82
+ os.mkdir(path)
83
+
84
+
85
+ class VitsSvc(object):
86
+ def __init__(self):
87
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
88
+ self.SVCVITS = None
89
+ self.hps = None
90
+ self.speakers = None
91
+ self.hubert_soft = utils.get_hubert_model()
92
+
93
+ def set_device(self, device):
94
+ self.device = torch.device(device)
95
+ self.hubert_soft.to(self.device)
96
+ if self.SVCVITS != None:
97
+ self.SVCVITS.to(self.device)
98
+
99
+ def loadCheckpoint(self, path):
100
+ self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
101
+ self.SVCVITS = SynthesizerTrn(
102
+ self.hps.data.filter_length // 2 + 1,
103
+ self.hps.train.segment_size // self.hps.data.hop_length,
104
+ **self.hps.model)
105
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
106
+ _ = self.SVCVITS.eval().to(self.device)
107
+ self.speakers = self.hps.spk
108
+
109
+ def get_units(self, source, sr):
110
+ source = source.unsqueeze(0).to(self.device)
111
+ with torch.inference_mode():
112
+ units = self.hubert_soft.units(source)
113
+ return units
114
+
115
+
116
+ def get_unit_pitch(self, in_path, tran):
117
+ source, sr = torchaudio.load(in_path)
118
+ source = torchaudio.functional.resample(source, sr, 16000)
119
+ if len(source.shape) == 2 and source.shape[1] >= 2:
120
+ source = torch.mean(source, dim=0).unsqueeze(0)
121
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
122
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
123
+ return soft, f0
124
+
125
+ def infer(self, speaker_id, tran, raw_path):
126
+ speaker_id = self.speakers[speaker_id]
127
+ sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
128
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
129
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
130
+ stn_tst = torch.FloatTensor(soft)
131
+ with torch.no_grad():
132
+ x_tst = stn_tst.unsqueeze(0).to(self.device)
133
+ x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
134
+ audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
135
+ return audio, audio.shape[-1]
136
+
137
+ def inference(self,srcaudio,chara,tran,slice_db):
138
+ sampling_rate, audio = srcaudio
139
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
140
+ if len(audio.shape) > 1:
141
+ audio = librosa.to_mono(audio.transpose(1, 0))
142
+ if sampling_rate != 16000:
143
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
144
+ soundfile.write("tmpwav.wav", audio, 16000, format="wav")
145
+ chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
146
+ audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
147
+ audio = []
148
+ for (slice_tag, data) in audio_data:
149
+ length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
150
+ raw_path = io.BytesIO()
151
+ soundfile.write(raw_path, data, audio_sr, format="wav")
152
+ raw_path.seek(0)
153
+ if slice_tag:
154
+ _audio = np.zeros(length)
155
+ else:
156
+ out_audio, out_sr = self.infer(chara, tran, raw_path)
157
+ _audio = out_audio.cpu().numpy()
158
+ audio.extend(list(_audio))
159
+ audio = (np.array(audio) * 32768.0).astype('int16')
160
+ return (self.hps.data.sampling_rate,audio)
inference/slicer.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import torch
3
+ import torchaudio
4
+
5
+
6
+ class Slicer:
7
+ def __init__(self,
8
+ sr: int,
9
+ threshold: float = -40.,
10
+ min_length: int = 5000,
11
+ min_interval: int = 300,
12
+ hop_size: int = 20,
13
+ max_sil_kept: int = 5000):
14
+ if not min_length >= min_interval >= hop_size:
15
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
16
+ if not max_sil_kept >= hop_size:
17
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
18
+ min_interval = sr * min_interval / 1000
19
+ self.threshold = 10 ** (threshold / 20.)
20
+ self.hop_size = round(sr * hop_size / 1000)
21
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
22
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
23
+ self.min_interval = round(min_interval / self.hop_size)
24
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
25
+
26
+ def _apply_slice(self, waveform, begin, end):
27
+ if len(waveform.shape) > 1:
28
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
29
+ else:
30
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
31
+
32
+ # @timeit
33
+ def slice(self, waveform):
34
+ if len(waveform.shape) > 1:
35
+ samples = librosa.to_mono(waveform)
36
+ else:
37
+ samples = waveform
38
+ if samples.shape[0] <= self.min_length:
39
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
40
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
41
+ sil_tags = []
42
+ silence_start = None
43
+ clip_start = 0
44
+ for i, rms in enumerate(rms_list):
45
+ # Keep looping while frame is silent.
46
+ if rms < self.threshold:
47
+ # Record start of silent frames.
48
+ if silence_start is None:
49
+ silence_start = i
50
+ continue
51
+ # Keep looping while frame is not silent and silence start has not been recorded.
52
+ if silence_start is None:
53
+ continue
54
+ # Clear recorded silence start if interval is not enough or clip is too short
55
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
56
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
57
+ if not is_leading_silence and not need_slice_middle:
58
+ silence_start = None
59
+ continue
60
+ # Need slicing. Record the range of silent frames to be removed.
61
+ if i - silence_start <= self.max_sil_kept:
62
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
63
+ if silence_start == 0:
64
+ sil_tags.append((0, pos))
65
+ else:
66
+ sil_tags.append((pos, pos))
67
+ clip_start = pos
68
+ elif i - silence_start <= self.max_sil_kept * 2:
69
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
70
+ pos += i - self.max_sil_kept
71
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
72
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
73
+ if silence_start == 0:
74
+ sil_tags.append((0, pos_r))
75
+ clip_start = pos_r
76
+ else:
77
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
78
+ clip_start = max(pos_r, pos)
79
+ else:
80
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
81
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
82
+ if silence_start == 0:
83
+ sil_tags.append((0, pos_r))
84
+ else:
85
+ sil_tags.append((pos_l, pos_r))
86
+ clip_start = pos_r
87
+ silence_start = None
88
+ # Deal with trailing silence.
89
+ total_frames = rms_list.shape[0]
90
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
91
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
92
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
93
+ sil_tags.append((pos, total_frames + 1))
94
+ # Apply and return slices.
95
+ if len(sil_tags) == 0:
96
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
97
+ else:
98
+ chunks = []
99
+ # 第一段静音并非从头开始,补上有声片段
100
+ if sil_tags[0][0]:
101
+ chunks.append(
102
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
103
+ for i in range(0, len(sil_tags)):
104
+ # 标识有声片段(跳过第一段)
105
+ if i:
106
+ chunks.append({"slice": False,
107
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
108
+ # 标识所有静音片段
109
+ chunks.append({"slice": True,
110
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
111
+ # 最后一段静音并非结尾,补上结尾片段
112
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
113
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
114
+ chunk_dict = {}
115
+ for i in range(len(chunks)):
116
+ chunk_dict[str(i)] = chunks[i]
117
+ return chunk_dict
118
+
119
+
120
+ def cut(audio_path, db_thresh=-30, min_len=5000):
121
+ audio, sr = librosa.load(audio_path, sr=None)
122
+ slicer = Slicer(
123
+ sr=sr,
124
+ threshold=db_thresh,
125
+ min_length=min_len
126
+ )
127
+ chunks = slicer.slice(audio)
128
+ return chunks
129
+
130
+
131
+ def chunks2audio(audio_path, chunks):
132
+ chunks = dict(chunks)
133
+ audio, sr = torchaudio.load(audio_path)
134
+ if len(audio.shape) == 2 and audio.shape[1] >= 2:
135
+ audio = torch.mean(audio, dim=0).unsqueeze(0)
136
+ audio = audio.cpu().numpy()[0]
137
+ result = []
138
+ for k, v in chunks.items():
139
+ tag = v["split_time"].split(",")
140
+ if tag[0] != tag[1]:
141
+ result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
142
+ return result, sr
inference_main.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+ import time
4
+ from pathlib import Path
5
+
6
+ import librosa
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import soundfile
10
+
11
+ from inference import infer_tool
12
+ from inference import slicer
13
+ from inference.infer_tool import Svc
14
+
15
+ logging.getLogger('numba').setLevel(logging.WARNING)
16
+ chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
17
+
18
+
19
+
20
+ def main():
21
+ import argparse
22
+
23
+ parser = argparse.ArgumentParser(description='sovits4 inference')
24
+
25
+ # 一定要设置的部分
26
+ parser.add_argument('-m', '--model_path', type=str, default="/Volumes/Extend/下载/G_20800.pth", help='模型路径')
27
+ parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
28
+ parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src"], help='wav文件名列表,放在raw文件夹下')
29
+ parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
30
+ parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nyaru'], help='合成目标说话人名称')
31
+
32
+ # 可选项部分
33
+ parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
34
+ help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
35
+ parser.add_argument('-cm', '--cluster_model_path', type=str, default="/Volumes/Extend/下载/so-vits-svc-4.0/logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
36
+ parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=1, help='聚类方案占比,范围0-1,若没有训练聚类模型则填0即可')
37
+
38
+ # 不用动的部分
39
+ parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
40
+ parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
41
+ parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
42
+ parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
43
+ parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
44
+
45
+ args = parser.parse_args()
46
+
47
+ svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
48
+ infer_tool.mkdir(["raw", "results"])
49
+ clean_names = args.clean_names
50
+ trans = args.trans
51
+ spk_list = args.spk_list
52
+ slice_db = args.slice_db
53
+ wav_format = args.wav_format
54
+ auto_predict_f0 = args.auto_predict_f0
55
+ cluster_infer_ratio = args.cluster_infer_ratio
56
+ noice_scale = args.noice_scale
57
+ pad_seconds = args.pad_seconds
58
+
59
+ infer_tool.fill_a_to_b(trans, clean_names)
60
+ for clean_name, tran in zip(clean_names, trans):
61
+ raw_audio_path = f"raw/{clean_name}"
62
+ if "." not in raw_audio_path:
63
+ raw_audio_path += ".wav"
64
+ infer_tool.format_wav(raw_audio_path)
65
+ wav_path = Path(raw_audio_path).with_suffix('.wav')
66
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
67
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
68
+
69
+ for spk in spk_list:
70
+ audio = []
71
+ for (slice_tag, data) in audio_data:
72
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
73
+ # padd
74
+ pad_len = int(audio_sr * pad_seconds)
75
+ data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
76
+ length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
77
+ raw_path = io.BytesIO()
78
+ soundfile.write(raw_path, data, audio_sr, format="wav")
79
+ raw_path.seek(0)
80
+ if slice_tag:
81
+ print('jump empty segment')
82
+ _audio = np.zeros(length)
83
+ else:
84
+ out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
85
+ cluster_infer_ratio=cluster_infer_ratio,
86
+ auto_predict_f0=auto_predict_f0,
87
+ noice_scale=noice_scale
88
+ )
89
+ _audio = out_audio.cpu().numpy()
90
+
91
+ pad_len = int(svc_model.target_sample * pad_seconds)
92
+ _audio = _audio[pad_len:-pad_len]
93
+ audio.extend(list(_audio))
94
+ key = "auto" if auto_predict_f0 else f"{tran}key"
95
+ cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
96
+ res_path = f'./results/old——{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
97
+ soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
98
+
99
+ if __name__ == '__main__':
100
+ main()
models.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import modules.attentions as attentions
8
+ import modules.commons as commons
9
+ import modules.modules as modules
10
+
11
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
12
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
+
14
+ import utils
15
+ from modules.commons import init_weights, get_padding
16
+ from vdecoder.hifigan.models import Generator
17
+ from utils import f0_to_coarse
18
+
19
+ class ResidualCouplingBlock(nn.Module):
20
+ def __init__(self,
21
+ channels,
22
+ hidden_channels,
23
+ kernel_size,
24
+ dilation_rate,
25
+ n_layers,
26
+ n_flows=4,
27
+ gin_channels=0):
28
+ super().__init__()
29
+ self.channels = channels
30
+ self.hidden_channels = hidden_channels
31
+ self.kernel_size = kernel_size
32
+ self.dilation_rate = dilation_rate
33
+ self.n_layers = n_layers
34
+ self.n_flows = n_flows
35
+ self.gin_channels = gin_channels
36
+
37
+ self.flows = nn.ModuleList()
38
+ for i in range(n_flows):
39
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
40
+ self.flows.append(modules.Flip())
41
+
42
+ def forward(self, x, x_mask, g=None, reverse=False):
43
+ if not reverse:
44
+ for flow in self.flows:
45
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
46
+ else:
47
+ for flow in reversed(self.flows):
48
+ x = flow(x, x_mask, g=g, reverse=reverse)
49
+ return x
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self,
54
+ in_channels,
55
+ out_channels,
56
+ hidden_channels,
57
+ kernel_size,
58
+ dilation_rate,
59
+ n_layers,
60
+ gin_channels=0):
61
+ super().__init__()
62
+ self.in_channels = in_channels
63
+ self.out_channels = out_channels
64
+ self.hidden_channels = hidden_channels
65
+ self.kernel_size = kernel_size
66
+ self.dilation_rate = dilation_rate
67
+ self.n_layers = n_layers
68
+ self.gin_channels = gin_channels
69
+
70
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
71
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
72
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
73
+
74
+ def forward(self, x, x_lengths, g=None):
75
+ # print(x.shape,x_lengths.shape)
76
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
77
+ x = self.pre(x) * x_mask
78
+ x = self.enc(x, x_mask, g=g)
79
+ stats = self.proj(x) * x_mask
80
+ m, logs = torch.split(stats, self.out_channels, dim=1)
81
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
82
+ return z, m, logs, x_mask
83
+
84
+
85
+ class TextEncoder(nn.Module):
86
+ def __init__(self,
87
+ out_channels,
88
+ hidden_channels,
89
+ kernel_size,
90
+ n_layers,
91
+ gin_channels=0,
92
+ filter_channels=None,
93
+ n_heads=None,
94
+ p_dropout=None):
95
+ super().__init__()
96
+ self.out_channels = out_channels
97
+ self.hidden_channels = hidden_channels
98
+ self.kernel_size = kernel_size
99
+ self.n_layers = n_layers
100
+ self.gin_channels = gin_channels
101
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
102
+ self.f0_emb = nn.Embedding(256, hidden_channels)
103
+
104
+ self.enc_ = attentions.Encoder(
105
+ hidden_channels,
106
+ filter_channels,
107
+ n_heads,
108
+ n_layers,
109
+ kernel_size,
110
+ p_dropout)
111
+
112
+ def forward(self, x, x_mask, f0=None, noice_scale=1):
113
+ x = x + self.f0_emb(f0).transpose(1,2)
114
+ x = self.enc_(x * x_mask, x_mask)
115
+ stats = self.proj(x) * x_mask
116
+ m, logs = torch.split(stats, self.out_channels, dim=1)
117
+ z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask
118
+
119
+ return z, m, logs, x_mask
120
+
121
+
122
+
123
+ class DiscriminatorP(torch.nn.Module):
124
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
125
+ super(DiscriminatorP, self).__init__()
126
+ self.period = period
127
+ self.use_spectral_norm = use_spectral_norm
128
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
129
+ self.convs = nn.ModuleList([
130
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
131
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
132
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
133
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
134
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
135
+ ])
136
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
137
+
138
+ def forward(self, x):
139
+ fmap = []
140
+
141
+ # 1d to 2d
142
+ b, c, t = x.shape
143
+ if t % self.period != 0: # pad first
144
+ n_pad = self.period - (t % self.period)
145
+ x = F.pad(x, (0, n_pad), "reflect")
146
+ t = t + n_pad
147
+ x = x.view(b, c, t // self.period, self.period)
148
+
149
+ for l in self.convs:
150
+ x = l(x)
151
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
152
+ fmap.append(x)
153
+ x = self.conv_post(x)
154
+ fmap.append(x)
155
+ x = torch.flatten(x, 1, -1)
156
+
157
+ return x, fmap
158
+
159
+
160
+ class DiscriminatorS(torch.nn.Module):
161
+ def __init__(self, use_spectral_norm=False):
162
+ super(DiscriminatorS, self).__init__()
163
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
164
+ self.convs = nn.ModuleList([
165
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
166
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
167
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
168
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
169
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
170
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
171
+ ])
172
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
173
+
174
+ def forward(self, x):
175
+ fmap = []
176
+
177
+ for l in self.convs:
178
+ x = l(x)
179
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
180
+ fmap.append(x)
181
+ x = self.conv_post(x)
182
+ fmap.append(x)
183
+ x = torch.flatten(x, 1, -1)
184
+
185
+ return x, fmap
186
+
187
+
188
+ class MultiPeriodDiscriminator(torch.nn.Module):
189
+ def __init__(self, use_spectral_norm=False):
190
+ super(MultiPeriodDiscriminator, self).__init__()
191
+ periods = [2,3,5,7,11]
192
+
193
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
194
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
195
+ self.discriminators = nn.ModuleList(discs)
196
+
197
+ def forward(self, y, y_hat):
198
+ y_d_rs = []
199
+ y_d_gs = []
200
+ fmap_rs = []
201
+ fmap_gs = []
202
+ for i, d in enumerate(self.discriminators):
203
+ y_d_r, fmap_r = d(y)
204
+ y_d_g, fmap_g = d(y_hat)
205
+ y_d_rs.append(y_d_r)
206
+ y_d_gs.append(y_d_g)
207
+ fmap_rs.append(fmap_r)
208
+ fmap_gs.append(fmap_g)
209
+
210
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
211
+
212
+
213
+ class SpeakerEncoder(torch.nn.Module):
214
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
215
+ super(SpeakerEncoder, self).__init__()
216
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
217
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
218
+ self.relu = nn.ReLU()
219
+
220
+ def forward(self, mels):
221
+ self.lstm.flatten_parameters()
222
+ _, (hidden, _) = self.lstm(mels)
223
+ embeds_raw = self.relu(self.linear(hidden[-1]))
224
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
225
+
226
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
227
+ mel_slices = []
228
+ for i in range(0, total_frames-partial_frames, partial_hop):
229
+ mel_range = torch.arange(i, i+partial_frames)
230
+ mel_slices.append(mel_range)
231
+
232
+ return mel_slices
233
+
234
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
235
+ mel_len = mel.size(1)
236
+ last_mel = mel[:,-partial_frames:]
237
+
238
+ if mel_len > partial_frames:
239
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
240
+ mels = list(mel[:,s] for s in mel_slices)
241
+ mels.append(last_mel)
242
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
243
+
244
+ with torch.no_grad():
245
+ partial_embeds = self(mels)
246
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
247
+ #embed = embed / torch.linalg.norm(embed, 2)
248
+ else:
249
+ with torch.no_grad():
250
+ embed = self(last_mel)
251
+
252
+ return embed
253
+
254
+ class F0Decoder(nn.Module):
255
+ def __init__(self,
256
+ out_channels,
257
+ hidden_channels,
258
+ filter_channels,
259
+ n_heads,
260
+ n_layers,
261
+ kernel_size,
262
+ p_dropout,
263
+ spk_channels=0):
264
+ super().__init__()
265
+ self.out_channels = out_channels
266
+ self.hidden_channels = hidden_channels
267
+ self.filter_channels = filter_channels
268
+ self.n_heads = n_heads
269
+ self.n_layers = n_layers
270
+ self.kernel_size = kernel_size
271
+ self.p_dropout = p_dropout
272
+ self.spk_channels = spk_channels
273
+
274
+ self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
275
+ self.decoder = attentions.FFT(
276
+ hidden_channels,
277
+ filter_channels,
278
+ n_heads,
279
+ n_layers,
280
+ kernel_size,
281
+ p_dropout)
282
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
283
+ self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
284
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
285
+
286
+ def forward(self, x, norm_f0, x_mask, spk_emb=None):
287
+ x = torch.detach(x)
288
+ if (spk_emb is not None):
289
+ x = x + self.cond(spk_emb)
290
+ x += self.f0_prenet(norm_f0)
291
+ x = self.prenet(x) * x_mask
292
+ x = self.decoder(x * x_mask, x_mask)
293
+ x = self.proj(x) * x_mask
294
+ return x
295
+
296
+
297
+ class SynthesizerTrn(nn.Module):
298
+ """
299
+ Synthesizer for Training
300
+ """
301
+
302
+ def __init__(self,
303
+ spec_channels,
304
+ segment_size,
305
+ inter_channels,
306
+ hidden_channels,
307
+ filter_channels,
308
+ n_heads,
309
+ n_layers,
310
+ kernel_size,
311
+ p_dropout,
312
+ resblock,
313
+ resblock_kernel_sizes,
314
+ resblock_dilation_sizes,
315
+ upsample_rates,
316
+ upsample_initial_channel,
317
+ upsample_kernel_sizes,
318
+ gin_channels,
319
+ ssl_dim,
320
+ n_speakers,
321
+ sampling_rate=44100,
322
+ **kwargs):
323
+
324
+ super().__init__()
325
+ self.spec_channels = spec_channels
326
+ self.inter_channels = inter_channels
327
+ self.hidden_channels = hidden_channels
328
+ self.filter_channels = filter_channels
329
+ self.n_heads = n_heads
330
+ self.n_layers = n_layers
331
+ self.kernel_size = kernel_size
332
+ self.p_dropout = p_dropout
333
+ self.resblock = resblock
334
+ self.resblock_kernel_sizes = resblock_kernel_sizes
335
+ self.resblock_dilation_sizes = resblock_dilation_sizes
336
+ self.upsample_rates = upsample_rates
337
+ self.upsample_initial_channel = upsample_initial_channel
338
+ self.upsample_kernel_sizes = upsample_kernel_sizes
339
+ self.segment_size = segment_size
340
+ self.gin_channels = gin_channels
341
+ self.ssl_dim = ssl_dim
342
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
343
+
344
+ self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
345
+
346
+ self.enc_p = TextEncoder(
347
+ inter_channels,
348
+ hidden_channels,
349
+ filter_channels=filter_channels,
350
+ n_heads=n_heads,
351
+ n_layers=n_layers,
352
+ kernel_size=kernel_size,
353
+ p_dropout=p_dropout
354
+ )
355
+ hps = {
356
+ "sampling_rate": sampling_rate,
357
+ "inter_channels": inter_channels,
358
+ "resblock": resblock,
359
+ "resblock_kernel_sizes": resblock_kernel_sizes,
360
+ "resblock_dilation_sizes": resblock_dilation_sizes,
361
+ "upsample_rates": upsample_rates,
362
+ "upsample_initial_channel": upsample_initial_channel,
363
+ "upsample_kernel_sizes": upsample_kernel_sizes,
364
+ "gin_channels": gin_channels,
365
+ }
366
+ self.dec = Generator(h=hps)
367
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
368
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
369
+ self.f0_decoder = F0Decoder(
370
+ 1,
371
+ hidden_channels,
372
+ filter_channels,
373
+ n_heads,
374
+ n_layers,
375
+ kernel_size,
376
+ p_dropout,
377
+ spk_channels=gin_channels
378
+ )
379
+ self.emb_uv = nn.Embedding(2, hidden_channels)
380
+
381
+ def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
382
+ g = self.emb_g(g).transpose(1,2)
383
+ # ssl prenet
384
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
385
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
386
+
387
+ # f0 predict
388
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
389
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
390
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
391
+
392
+ # encoder
393
+ z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
394
+ z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
395
+
396
+ # flow
397
+ z_p = self.flow(z, spec_mask, g=g)
398
+ z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
399
+
400
+ # nsf decoder
401
+ o = self.dec(z_slice, g=g, f0=pitch_slice)
402
+
403
+ return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
404
+
405
+ def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
406
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
407
+ g = self.emb_g(g).transpose(1,2)
408
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
409
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
410
+
411
+ if predict_f0:
412
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
413
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
414
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
415
+ f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
416
+
417
+ z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
418
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
419
+ o = self.dec(z * c_mask, g=g, f0=f0)
420
+ return o
models/alice/alice.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1bef76e26beeadcae5f716cc0b60abb2aac4aae1316cac709cc439726cf533
3
+ size 180883747
models/alice/config.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 32,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 10240,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 512,
23
+ "port": "8001",
24
+ "keep_ckpts": 99
25
+ },
26
+ "data": {
27
+ "training_files": "filelists/train.txt",
28
+ "validation_files": "filelists/val.txt",
29
+ "max_wav_value": 32768.0,
30
+ "sampling_rate": 44100,
31
+ "filter_length": 2048,
32
+ "hop_length": 512,
33
+ "win_length": 2048,
34
+ "n_mel_channels": 80,
35
+ "mel_fmin": 0.0,
36
+ "mel_fmax": 22050
37
+ },
38
+ "model": {
39
+ "inter_channels": 192,
40
+ "hidden_channels": 192,
41
+ "filter_channels": 768,
42
+ "n_heads": 2,
43
+ "n_layers": 6,
44
+ "kernel_size": 3,
45
+ "p_dropout": 0.1,
46
+ "resblock": "1",
47
+ "resblock_kernel_sizes": [
48
+ 3,
49
+ 7,
50
+ 11
51
+ ],
52
+ "resblock_dilation_sizes": [
53
+ [
54
+ 1,
55
+ 3,
56
+ 5
57
+ ],
58
+ [
59
+ 1,
60
+ 3,
61
+ 5
62
+ ],
63
+ [
64
+ 1,
65
+ 3,
66
+ 5
67
+ ]
68
+ ],
69
+ "upsample_rates": [
70
+ 8,
71
+ 8,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "upsample_initial_channel": 512,
77
+ "upsample_kernel_sizes": [
78
+ 16,
79
+ 16,
80
+ 4,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256,
87
+ "ssl_dim": 256,
88
+ "n_speakers": 200
89
+ },
90
+ "spk": {
91
+ "alice": 0
92
+ }
93
+ }
models/alice/cover.png ADDED
models/goldship/config.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 32,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 10240,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 512,
23
+ "port": "8001",
24
+ "keep_ckpts": 99
25
+ },
26
+ "data": {
27
+ "training_files": "filelists/train.txt",
28
+ "validation_files": "filelists/val.txt",
29
+ "max_wav_value": 32768.0,
30
+ "sampling_rate": 44100,
31
+ "filter_length": 2048,
32
+ "hop_length": 512,
33
+ "win_length": 2048,
34
+ "n_mel_channels": 80,
35
+ "mel_fmin": 0.0,
36
+ "mel_fmax": 22050
37
+ },
38
+ "model": {
39
+ "inter_channels": 192,
40
+ "hidden_channels": 192,
41
+ "filter_channels": 768,
42
+ "n_heads": 2,
43
+ "n_layers": 6,
44
+ "kernel_size": 3,
45
+ "p_dropout": 0.1,
46
+ "resblock": "1",
47
+ "resblock_kernel_sizes": [
48
+ 3,
49
+ 7,
50
+ 11
51
+ ],
52
+ "resblock_dilation_sizes": [
53
+ [
54
+ 1,
55
+ 3,
56
+ 5
57
+ ],
58
+ [
59
+ 1,
60
+ 3,
61
+ 5
62
+ ],
63
+ [
64
+ 1,
65
+ 3,
66
+ 5
67
+ ]
68
+ ],
69
+ "upsample_rates": [
70
+ 8,
71
+ 8,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "upsample_initial_channel": 512,
77
+ "upsample_kernel_sizes": [
78
+ 16,
79
+ 16,
80
+ 4,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256,
87
+ "ssl_dim": 256,
88
+ "n_speakers": 200
89
+ },
90
+ "spk": {
91
+ "goldship": 0
92
+ }
93
+ }
models/goldship/cover.png ADDED
models/goldship/goldship.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c91b69fa9dc4f101e80a9a64fddab15a68919dc2a3d0129d0d626ab31805dc9e
3
+ size 180883747
models/rudolf/config.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 32,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 10240,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 512,
23
+ "port": "8001",
24
+ "keep_ckpts": 99
25
+ },
26
+ "data": {
27
+ "training_files": "filelists/train.txt",
28
+ "validation_files": "filelists/val.txt",
29
+ "max_wav_value": 32768.0,
30
+ "sampling_rate": 44100,
31
+ "filter_length": 2048,
32
+ "hop_length": 512,
33
+ "win_length": 2048,
34
+ "n_mel_channels": 80,
35
+ "mel_fmin": 0.0,
36
+ "mel_fmax": 22050
37
+ },
38
+ "model": {
39
+ "inter_channels": 192,
40
+ "hidden_channels": 192,
41
+ "filter_channels": 768,
42
+ "n_heads": 2,
43
+ "n_layers": 6,
44
+ "kernel_size": 3,
45
+ "p_dropout": 0.1,
46
+ "resblock": "1",
47
+ "resblock_kernel_sizes": [
48
+ 3,
49
+ 7,
50
+ 11
51
+ ],
52
+ "resblock_dilation_sizes": [
53
+ [
54
+ 1,
55
+ 3,
56
+ 5
57
+ ],
58
+ [
59
+ 1,
60
+ 3,
61
+ 5
62
+ ],
63
+ [
64
+ 1,
65
+ 3,
66
+ 5
67
+ ]
68
+ ],
69
+ "upsample_rates": [
70
+ 8,
71
+ 8,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "upsample_initial_channel": 512,
77
+ "upsample_kernel_sizes": [
78
+ 16,
79
+ 16,
80
+ 4,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256,
87
+ "ssl_dim": 256,
88
+ "n_speakers": 200
89
+ },
90
+ "spk": {
91
+ "rudolf": 0
92
+ }
93
+ }
models/rudolf/cover.png ADDED
models/rudolf/rudolf.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dc3027ae74f1747208c4c4c686dd65c7064899cce37d8d19e2e1eb7cb53df09
3
+ size 180883747
models/tannhauser/config.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 32,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 10240,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 512,
23
+ "port": "8001",
24
+ "keep_ckpts": 99
25
+ },
26
+ "data": {
27
+ "training_files": "filelists/train.txt",
28
+ "validation_files": "filelists/val.txt",
29
+ "max_wav_value": 32768.0,
30
+ "sampling_rate": 44100,
31
+ "filter_length": 2048,
32
+ "hop_length": 512,
33
+ "win_length": 2048,
34
+ "n_mel_channels": 80,
35
+ "mel_fmin": 0.0,
36
+ "mel_fmax": 22050
37
+ },
38
+ "model": {
39
+ "inter_channels": 192,
40
+ "hidden_channels": 192,
41
+ "filter_channels": 768,
42
+ "n_heads": 2,
43
+ "n_layers": 6,
44
+ "kernel_size": 3,
45
+ "p_dropout": 0.1,
46
+ "resblock": "1",
47
+ "resblock_kernel_sizes": [
48
+ 3,
49
+ 7,
50
+ 11
51
+ ],
52
+ "resblock_dilation_sizes": [
53
+ [
54
+ 1,
55
+ 3,
56
+ 5
57
+ ],
58
+ [
59
+ 1,
60
+ 3,
61
+ 5
62
+ ],
63
+ [
64
+ 1,
65
+ 3,
66
+ 5
67
+ ]
68
+ ],
69
+ "upsample_rates": [
70
+ 8,
71
+ 8,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "upsample_initial_channel": 512,
77
+ "upsample_kernel_sizes": [
78
+ 16,
79
+ 16,
80
+ 4,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256,
87
+ "ssl_dim": 256,
88
+ "n_speakers": 200
89
+ },
90
+ "spk": {
91
+ "tannhauser": 0
92
+ }
93
+ }
models/tannhauser/cover.png ADDED
models/tannhauser/tannhauser.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a39d57f9e5ae1eba070eb782df6355699ff93f680b075f99c45613ad590035ef
3
+ size 180883747
models/teio/config.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 32,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 10240,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 512,
23
+ "port": "8001",
24
+ "keep_ckpts": 99
25
+ },
26
+ "data": {
27
+ "training_files": "filelists/train.txt",
28
+ "validation_files": "filelists/val.txt",
29
+ "max_wav_value": 32768.0,
30
+ "sampling_rate": 44100,
31
+ "filter_length": 2048,
32
+ "hop_length": 512,
33
+ "win_length": 2048,
34
+ "n_mel_channels": 80,
35
+ "mel_fmin": 0.0,
36
+ "mel_fmax": 22050
37
+ },
38
+ "model": {
39
+ "inter_channels": 192,
40
+ "hidden_channels": 192,
41
+ "filter_channels": 768,
42
+ "n_heads": 2,
43
+ "n_layers": 6,
44
+ "kernel_size": 3,
45
+ "p_dropout": 0.1,
46
+ "resblock": "1",
47
+ "resblock_kernel_sizes": [
48
+ 3,
49
+ 7,
50
+ 11
51
+ ],
52
+ "resblock_dilation_sizes": [
53
+ [
54
+ 1,
55
+ 3,
56
+ 5
57
+ ],
58
+ [
59
+ 1,
60
+ 3,
61
+ 5
62
+ ],
63
+ [
64
+ 1,
65
+ 3,
66
+ 5
67
+ ]
68
+ ],
69
+ "upsample_rates": [
70
+ 8,
71
+ 8,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "upsample_initial_channel": 512,
77
+ "upsample_kernel_sizes": [
78
+ 16,
79
+ 16,
80
+ 4,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256,
87
+ "ssl_dim": 256,
88
+ "n_speakers": 200
89
+ },
90
+ "spk": {
91
+ "teio": 0
92
+ }
93
+ }
models/teio/cover.png ADDED
models/teio/teio.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:305cbd8bc9bc468f2744d0fc425d1c7363a6232140728d403e90486dc2921160
3
+ size 180883747
modules/__init__.py ADDED
File without changes
modules/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (155 Bytes). View file
 
modules/__pycache__/attentions.cpython-38.pyc ADDED
Binary file (10.7 kB). View file
 
modules/__pycache__/commons.cpython-38.pyc ADDED
Binary file (6.65 kB). View file
 
modules/__pycache__/modules.cpython-38.pyc ADDED
Binary file (10.1 kB). View file
 
modules/attentions.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import modules.commons as commons
9
+ import modules.modules as modules
10
+ from modules.modules import LayerNorm
11
+
12
+
13
+ class FFT(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
15
+ proximal_bias=False, proximal_init=True, **kwargs):
16
+ super().__init__()
17
+ self.hidden_channels = hidden_channels
18
+ self.filter_channels = filter_channels
19
+ self.n_heads = n_heads
20
+ self.n_layers = n_layers
21
+ self.kernel_size = kernel_size
22
+ self.p_dropout = p_dropout
23
+ self.proximal_bias = proximal_bias
24
+ self.proximal_init = proximal_init
25
+
26
+ self.drop = nn.Dropout(p_dropout)
27
+ self.self_attn_layers = nn.ModuleList()
28
+ self.norm_layers_0 = nn.ModuleList()
29
+ self.ffn_layers = nn.ModuleList()
30
+ self.norm_layers_1 = nn.ModuleList()
31
+ for i in range(self.n_layers):
32
+ self.self_attn_layers.append(
33
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
34
+ proximal_init=proximal_init))
35
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
36
+ self.ffn_layers.append(
37
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
38
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
39
+
40
+ def forward(self, x, x_mask):
41
+ """
42
+ x: decoder input
43
+ h: encoder output
44
+ """
45
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
46
+ x = x * x_mask
47
+ for i in range(self.n_layers):
48
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
49
+ y = self.drop(y)
50
+ x = self.norm_layers_0[i](x + y)
51
+
52
+ y = self.ffn_layers[i](x, x_mask)
53
+ y = self.drop(y)
54
+ x = self.norm_layers_1[i](x + y)
55
+ x = x * x_mask
56
+ return x
57
+
58
+
59
+ class Encoder(nn.Module):
60
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
61
+ super().__init__()
62
+ self.hidden_channels = hidden_channels
63
+ self.filter_channels = filter_channels
64
+ self.n_heads = n_heads
65
+ self.n_layers = n_layers
66
+ self.kernel_size = kernel_size
67
+ self.p_dropout = p_dropout
68
+ self.window_size = window_size
69
+
70
+ self.drop = nn.Dropout(p_dropout)
71
+ self.attn_layers = nn.ModuleList()
72
+ self.norm_layers_1 = nn.ModuleList()
73
+ self.ffn_layers = nn.ModuleList()
74
+ self.norm_layers_2 = nn.ModuleList()
75
+ for i in range(self.n_layers):
76
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
77
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
78
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
79
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
80
+
81
+ def forward(self, x, x_mask):
82
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
83
+ x = x * x_mask
84
+ for i in range(self.n_layers):
85
+ y = self.attn_layers[i](x, x, attn_mask)
86
+ y = self.drop(y)
87
+ x = self.norm_layers_1[i](x + y)
88
+
89
+ y = self.ffn_layers[i](x, x_mask)
90
+ y = self.drop(y)
91
+ x = self.norm_layers_2[i](x + y)
92
+ x = x * x_mask
93
+ return x
94
+
95
+
96
+ class Decoder(nn.Module):
97
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
98
+ super().__init__()
99
+ self.hidden_channels = hidden_channels
100
+ self.filter_channels = filter_channels
101
+ self.n_heads = n_heads
102
+ self.n_layers = n_layers
103
+ self.kernel_size = kernel_size
104
+ self.p_dropout = p_dropout
105
+ self.proximal_bias = proximal_bias
106
+ self.proximal_init = proximal_init
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.self_attn_layers = nn.ModuleList()
110
+ self.norm_layers_0 = nn.ModuleList()
111
+ self.encdec_attn_layers = nn.ModuleList()
112
+ self.norm_layers_1 = nn.ModuleList()
113
+ self.ffn_layers = nn.ModuleList()
114
+ self.norm_layers_2 = nn.ModuleList()
115
+ for i in range(self.n_layers):
116
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
117
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
118
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
119
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
120
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
121
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
122
+
123
+ def forward(self, x, x_mask, h, h_mask):
124
+ """
125
+ x: decoder input
126
+ h: encoder output
127
+ """
128
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
129
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
130
+ x = x * x_mask
131
+ for i in range(self.n_layers):
132
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
133
+ y = self.drop(y)
134
+ x = self.norm_layers_0[i](x + y)
135
+
136
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
137
+ y = self.drop(y)
138
+ x = self.norm_layers_1[i](x + y)
139
+
140
+ y = self.ffn_layers[i](x, x_mask)
141
+ y = self.drop(y)
142
+ x = self.norm_layers_2[i](x + y)
143
+ x = x * x_mask
144
+ return x
145
+
146
+
147
+ class MultiHeadAttention(nn.Module):
148
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
149
+ super().__init__()
150
+ assert channels % n_heads == 0
151
+
152
+ self.channels = channels
153
+ self.out_channels = out_channels
154
+ self.n_heads = n_heads
155
+ self.p_dropout = p_dropout
156
+ self.window_size = window_size
157
+ self.heads_share = heads_share
158
+ self.block_length = block_length
159
+ self.proximal_bias = proximal_bias
160
+ self.proximal_init = proximal_init
161
+ self.attn = None
162
+
163
+ self.k_channels = channels // n_heads
164
+ self.conv_q = nn.Conv1d(channels, channels, 1)
165
+ self.conv_k = nn.Conv1d(channels, channels, 1)
166
+ self.conv_v = nn.Conv1d(channels, channels, 1)
167
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
168
+ self.drop = nn.Dropout(p_dropout)
169
+
170
+ if window_size is not None:
171
+ n_heads_rel = 1 if heads_share else n_heads
172
+ rel_stddev = self.k_channels**-0.5
173
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
174
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
175
+
176
+ nn.init.xavier_uniform_(self.conv_q.weight)
177
+ nn.init.xavier_uniform_(self.conv_k.weight)
178
+ nn.init.xavier_uniform_(self.conv_v.weight)
179
+ if proximal_init:
180
+ with torch.no_grad():
181
+ self.conv_k.weight.copy_(self.conv_q.weight)
182
+ self.conv_k.bias.copy_(self.conv_q.bias)
183
+
184
+ def forward(self, x, c, attn_mask=None):
185
+ q = self.conv_q(x)
186
+ k = self.conv_k(c)
187
+ v = self.conv_v(c)
188
+
189
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
190
+
191
+ x = self.conv_o(x)
192
+ return x
193
+
194
+ def attention(self, query, key, value, mask=None):
195
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
196
+ b, d, t_s, t_t = (*key.size(), query.size(2))
197
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
198
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
199
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
200
+
201
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
202
+ if self.window_size is not None:
203
+ assert t_s == t_t, "Relative attention is only available for self-attention."
204
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
205
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
206
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
207
+ scores = scores + scores_local
208
+ if self.proximal_bias:
209
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
210
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
211
+ if mask is not None:
212
+ scores = scores.masked_fill(mask == 0, -1e4)
213
+ if self.block_length is not None:
214
+ assert t_s == t_t, "Local attention is only available for self-attention."
215
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
216
+ scores = scores.masked_fill(block_mask == 0, -1e4)
217
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
218
+ p_attn = self.drop(p_attn)
219
+ output = torch.matmul(p_attn, value)
220
+ if self.window_size is not None:
221
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
222
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
223
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
224
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
225
+ return output, p_attn
226
+
227
+ def _matmul_with_relative_values(self, x, y):
228
+ """
229
+ x: [b, h, l, m]
230
+ y: [h or 1, m, d]
231
+ ret: [b, h, l, d]
232
+ """
233
+ ret = torch.matmul(x, y.unsqueeze(0))
234
+ return ret
235
+
236
+ def _matmul_with_relative_keys(self, x, y):
237
+ """
238
+ x: [b, h, l, d]
239
+ y: [h or 1, m, d]
240
+ ret: [b, h, l, m]
241
+ """
242
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
243
+ return ret
244
+
245
+ def _get_relative_embeddings(self, relative_embeddings, length):
246
+ max_relative_position = 2 * self.window_size + 1
247
+ # Pad first before slice to avoid using cond ops.
248
+ pad_length = max(length - (self.window_size + 1), 0)
249
+ slice_start_position = max((self.window_size + 1) - length, 0)
250
+ slice_end_position = slice_start_position + 2 * length - 1
251
+ if pad_length > 0:
252
+ padded_relative_embeddings = F.pad(
253
+ relative_embeddings,
254
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
255
+ else:
256
+ padded_relative_embeddings = relative_embeddings
257
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
258
+ return used_relative_embeddings
259
+
260
+ def _relative_position_to_absolute_position(self, x):
261
+ """
262
+ x: [b, h, l, 2*l-1]
263
+ ret: [b, h, l, l]
264
+ """
265
+ batch, heads, length, _ = x.size()
266
+ # Concat columns of pad to shift from relative to absolute indexing.
267
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
268
+
269
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
270
+ x_flat = x.view([batch, heads, length * 2 * length])
271
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
272
+
273
+ # Reshape and slice out the padded elements.
274
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
275
+ return x_final
276
+
277
+ def _absolute_position_to_relative_position(self, x):
278
+ """
279
+ x: [b, h, l, l]
280
+ ret: [b, h, l, 2*l-1]
281
+ """
282
+ batch, heads, length, _ = x.size()
283
+ # padd along column
284
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
285
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
286
+ # add 0's in the beginning that will skew the elements after reshape
287
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
288
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
289
+ return x_final
290
+
291
+ def _attention_bias_proximal(self, length):
292
+ """Bias for self-attention to encourage attention to close positions.
293
+ Args:
294
+ length: an integer scalar.
295
+ Returns:
296
+ a Tensor with shape [1, 1, length, length]
297
+ """
298
+ r = torch.arange(length, dtype=torch.float32)
299
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
300
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
301
+
302
+
303
+ class FFN(nn.Module):
304
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
305
+ super().__init__()
306
+ self.in_channels = in_channels
307
+ self.out_channels = out_channels
308
+ self.filter_channels = filter_channels
309
+ self.kernel_size = kernel_size
310
+ self.p_dropout = p_dropout
311
+ self.activation = activation
312
+ self.causal = causal
313
+
314
+ if causal:
315
+ self.padding = self._causal_padding
316
+ else:
317
+ self.padding = self._same_padding
318
+
319
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
320
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
321
+ self.drop = nn.Dropout(p_dropout)
322
+
323
+ def forward(self, x, x_mask):
324
+ x = self.conv_1(self.padding(x * x_mask))
325
+ if self.activation == "gelu":
326
+ x = x * torch.sigmoid(1.702 * x)
327
+ else:
328
+ x = torch.relu(x)
329
+ x = self.drop(x)
330
+ x = self.conv_2(self.padding(x * x_mask))
331
+ return x * x_mask
332
+
333
+ def _causal_padding(self, x):
334
+ if self.kernel_size == 1:
335
+ return x
336
+ pad_l = self.kernel_size - 1
337
+ pad_r = 0
338
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
339
+ x = F.pad(x, commons.convert_pad_shape(padding))
340
+ return x
341
+
342
+ def _same_padding(self, x):
343
+ if self.kernel_size == 1:
344
+ return x
345
+ pad_l = (self.kernel_size - 1) // 2
346
+ pad_r = self.kernel_size // 2
347
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
348
+ x = F.pad(x, commons.convert_pad_shape(padding))
349
+ return x
modules/commons.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ def slice_pitch_segments(x, ids_str, segment_size=4):
8
+ ret = torch.zeros_like(x[:, :segment_size])
9
+ for i in range(x.size(0)):
10
+ idx_str = ids_str[i]
11
+ idx_end = idx_str + segment_size
12
+ ret[i] = x[i, idx_str:idx_end]
13
+ return ret
14
+
15
+ def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
16
+ b, d, t = x.size()
17
+ if x_lengths is None:
18
+ x_lengths = t
19
+ ids_str_max = x_lengths - segment_size + 1
20
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
21
+ ret = slice_segments(x, ids_str, segment_size)
22
+ ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
23
+ return ret, ret_pitch, ids_str
24
+
25
+ def init_weights(m, mean=0.0, std=0.01):
26
+ classname = m.__class__.__name__
27
+ if classname.find("Conv") != -1:
28
+ m.weight.data.normal_(mean, std)
29
+
30
+
31
+ def get_padding(kernel_size, dilation=1):
32
+ return int((kernel_size*dilation - dilation)/2)
33
+
34
+
35
+ def convert_pad_shape(pad_shape):
36
+ l = pad_shape[::-1]
37
+ pad_shape = [item for sublist in l for item in sublist]
38
+ return pad_shape
39
+
40
+
41
+ def intersperse(lst, item):
42
+ result = [item] * (len(lst) * 2 + 1)
43
+ result[1::2] = lst
44
+ return result
45
+
46
+
47
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
48
+ """KL(P||Q)"""
49
+ kl = (logs_q - logs_p) - 0.5
50
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
51
+ return kl
52
+
53
+
54
+ def rand_gumbel(shape):
55
+ """Sample from the Gumbel distribution, protect from overflows."""
56
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
57
+ return -torch.log(-torch.log(uniform_samples))
58
+
59
+
60
+ def rand_gumbel_like(x):
61
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
62
+ return g
63
+
64
+
65
+ def slice_segments(x, ids_str, segment_size=4):
66
+ ret = torch.zeros_like(x[:, :, :segment_size])
67
+ for i in range(x.size(0)):
68
+ idx_str = ids_str[i]
69
+ idx_end = idx_str + segment_size
70
+ ret[i] = x[i, :, idx_str:idx_end]
71
+ return ret
72
+
73
+
74
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
75
+ b, d, t = x.size()
76
+ if x_lengths is None:
77
+ x_lengths = t
78
+ ids_str_max = x_lengths - segment_size + 1
79
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
80
+ ret = slice_segments(x, ids_str, segment_size)
81
+ return ret, ids_str
82
+
83
+
84
+ def rand_spec_segments(x, x_lengths=None, segment_size=4):
85
+ b, d, t = x.size()
86
+ if x_lengths is None:
87
+ x_lengths = t
88
+ ids_str_max = x_lengths - segment_size
89
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
90
+ ret = slice_segments(x, ids_str, segment_size)
91
+ return ret, ids_str
92
+
93
+
94
+ def get_timing_signal_1d(
95
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
96
+ position = torch.arange(length, dtype=torch.float)
97
+ num_timescales = channels // 2
98
+ log_timescale_increment = (
99
+ math.log(float(max_timescale) / float(min_timescale)) /
100
+ (num_timescales - 1))
101
+ inv_timescales = min_timescale * torch.exp(
102
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
103
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
104
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
105
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
106
+ signal = signal.view(1, channels, length)
107
+ return signal
108
+
109
+
110
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
111
+ b, channels, length = x.size()
112
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
113
+ return x + signal.to(dtype=x.dtype, device=x.device)
114
+
115
+
116
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
117
+ b, channels, length = x.size()
118
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
119
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
120
+
121
+
122
+ def subsequent_mask(length):
123
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
124
+ return mask
125
+
126
+
127
+ @torch.jit.script
128
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
129
+ n_channels_int = n_channels[0]
130
+ in_act = input_a + input_b
131
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
132
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
133
+ acts = t_act * s_act
134
+ return acts
135
+
136
+
137
+ def convert_pad_shape(pad_shape):
138
+ l = pad_shape[::-1]
139
+ pad_shape = [item for sublist in l for item in sublist]
140
+ return pad_shape
141
+
142
+
143
+ def shift_1d(x):
144
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
145
+ return x
146
+
147
+
148
+ def sequence_mask(length, max_length=None):
149
+ if max_length is None:
150
+ max_length = length.max()
151
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
152
+ return x.unsqueeze(0) < length.unsqueeze(1)
153
+
154
+
155
+ def generate_path(duration, mask):
156
+ """
157
+ duration: [b, 1, t_x]
158
+ mask: [b, 1, t_y, t_x]
159
+ """
160
+ device = duration.device
161
+
162
+ b, _, t_y, t_x = mask.shape
163
+ cum_duration = torch.cumsum(duration, -1)
164
+
165
+ cum_duration_flat = cum_duration.view(b * t_x)
166
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
167
+ path = path.view(b, t_x, t_y)
168
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
169
+ path = path.unsqueeze(1).transpose(2,3) * mask
170
+ return path
171
+
172
+
173
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
174
+ if isinstance(parameters, torch.Tensor):
175
+ parameters = [parameters]
176
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
177
+ norm_type = float(norm_type)
178
+ if clip_value is not None:
179
+ clip_value = float(clip_value)
180
+
181
+ total_norm = 0
182
+ for p in parameters:
183
+ param_norm = p.grad.data.norm(norm_type)
184
+ total_norm += param_norm.item() ** norm_type
185
+ if clip_value is not None:
186
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
187
+ total_norm = total_norm ** (1. / norm_type)
188
+ return total_norm
modules/ddsp.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import functional as F
4
+ import torch.fft as fft
5
+ import numpy as np
6
+ import librosa as li
7
+ import math
8
+ from scipy.signal import get_window
9
+
10
+
11
+ def safe_log(x):
12
+ return torch.log(x + 1e-7)
13
+
14
+
15
+ @torch.no_grad()
16
+ def mean_std_loudness(dataset):
17
+ mean = 0
18
+ std = 0
19
+ n = 0
20
+ for _, _, l in dataset:
21
+ n += 1
22
+ mean += (l.mean().item() - mean) / n
23
+ std += (l.std().item() - std) / n
24
+ return mean, std
25
+
26
+
27
+ def multiscale_fft(signal, scales, overlap):
28
+ stfts = []
29
+ for s in scales:
30
+ S = torch.stft(
31
+ signal,
32
+ s,
33
+ int(s * (1 - overlap)),
34
+ s,
35
+ torch.hann_window(s).to(signal),
36
+ True,
37
+ normalized=True,
38
+ return_complex=True,
39
+ ).abs()
40
+ stfts.append(S)
41
+ return stfts
42
+
43
+
44
+ def resample(x, factor: int):
45
+ batch, frame, channel = x.shape
46
+ x = x.permute(0, 2, 1).reshape(batch * channel, 1, frame)
47
+
48
+ window = torch.hann_window(
49
+ factor * 2,
50
+ dtype=x.dtype,
51
+ device=x.device,
52
+ ).reshape(1, 1, -1)
53
+ y = torch.zeros(x.shape[0], x.shape[1], factor * x.shape[2]).to(x)
54
+ y[..., ::factor] = x
55
+ y[..., -1:] = x[..., -1:]
56
+ y = torch.nn.functional.pad(y, [factor, factor])
57
+ y = torch.nn.functional.conv1d(y, window)[..., :-1]
58
+
59
+ y = y.reshape(batch, channel, factor * frame).permute(0, 2, 1)
60
+
61
+ return y
62
+
63
+
64
+ def upsample(signal, factor):
65
+ signal = signal.permute(0, 2, 1)
66
+ signal = nn.functional.interpolate(signal, size=signal.shape[-1] * factor)
67
+ return signal.permute(0, 2, 1)
68
+
69
+
70
+ def remove_above_nyquist(amplitudes, pitch, sampling_rate):
71
+ n_harm = amplitudes.shape[-1]
72
+ pitches = pitch * torch.arange(1, n_harm + 1).to(pitch)
73
+ aa = (pitches < sampling_rate / 2).float() + 1e-4
74
+ return amplitudes * aa
75
+
76
+
77
+ def scale_function(x):
78
+ return 2 * torch.sigmoid(x) ** (math.log(10)) + 1e-7
79
+
80
+
81
+ def extract_loudness(signal, sampling_rate, block_size, n_fft=2048):
82
+ S = li.stft(
83
+ signal,
84
+ n_fft=n_fft,
85
+ hop_length=block_size,
86
+ win_length=n_fft,
87
+ center=True,
88
+ )
89
+ S = np.log(abs(S) + 1e-7)
90
+ f = li.fft_frequencies(sampling_rate, n_fft)
91
+ a_weight = li.A_weighting(f)
92
+
93
+ S = S + a_weight.reshape(-1, 1)
94
+
95
+ S = np.mean(S, 0)[..., :-1]
96
+
97
+ return S
98
+
99
+
100
+ def extract_pitch(signal, sampling_rate, block_size):
101
+ length = signal.shape[-1] // block_size
102
+ f0 = crepe.predict(
103
+ signal,
104
+ sampling_rate,
105
+ step_size=int(1000 * block_size / sampling_rate),
106
+ verbose=1,
107
+ center=True,
108
+ viterbi=True,
109
+ )
110
+ f0 = f0[1].reshape(-1)[:-1]
111
+
112
+ if f0.shape[-1] != length:
113
+ f0 = np.interp(
114
+ np.linspace(0, 1, length, endpoint=False),
115
+ np.linspace(0, 1, f0.shape[-1], endpoint=False),
116
+ f0,
117
+ )
118
+
119
+ return f0
120
+
121
+
122
+ def mlp(in_size, hidden_size, n_layers):
123
+ channels = [in_size] + (n_layers) * [hidden_size]
124
+ net = []
125
+ for i in range(n_layers):
126
+ net.append(nn.Linear(channels[i], channels[i + 1]))
127
+ net.append(nn.LayerNorm(channels[i + 1]))
128
+ net.append(nn.LeakyReLU())
129
+ return nn.Sequential(*net)
130
+
131
+
132
+ def gru(n_input, hidden_size):
133
+ return nn.GRU(n_input * hidden_size, hidden_size, batch_first=True)
134
+
135
+
136
+ def harmonic_synth(pitch, amplitudes, sampling_rate):
137
+ n_harmonic = amplitudes.shape[-1]
138
+ omega = torch.cumsum(2 * math.pi * pitch / sampling_rate, 1)
139
+ omegas = omega * torch.arange(1, n_harmonic + 1).to(omega)
140
+ signal = (torch.sin(omegas) * amplitudes).sum(-1, keepdim=True)
141
+ return signal
142
+
143
+
144
+ def amp_to_impulse_response(amp, target_size):
145
+ amp = torch.stack([amp, torch.zeros_like(amp)], -1)
146
+ amp = torch.view_as_complex(amp)
147
+ amp = fft.irfft(amp)
148
+
149
+ filter_size = amp.shape[-1]
150
+
151
+ amp = torch.roll(amp, filter_size // 2, -1)
152
+ win = torch.hann_window(filter_size, dtype=amp.dtype, device=amp.device)
153
+
154
+ amp = amp * win
155
+
156
+ amp = nn.functional.pad(amp, (0, int(target_size) - int(filter_size)))
157
+ amp = torch.roll(amp, -filter_size // 2, -1)
158
+
159
+ return amp
160
+
161
+
162
+ def fft_convolve(signal, kernel):
163
+ signal = nn.functional.pad(signal, (0, signal.shape[-1]))
164
+ kernel = nn.functional.pad(kernel, (kernel.shape[-1], 0))
165
+
166
+ output = fft.irfft(fft.rfft(signal) * fft.rfft(kernel))
167
+ output = output[..., output.shape[-1] // 2:]
168
+
169
+ return output
170
+
171
+
172
+ def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
173
+ if win_type == 'None' or win_type is None:
174
+ window = np.ones(win_len)
175
+ else:
176
+ window = get_window(win_type, win_len, fftbins=True) # **0.5
177
+
178
+ N = fft_len
179
+ fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
180
+ real_kernel = np.real(fourier_basis)
181
+ imag_kernel = np.imag(fourier_basis)
182
+ kernel = np.concatenate([real_kernel, imag_kernel], 1).T
183
+
184
+ if invers:
185
+ kernel = np.linalg.pinv(kernel).T
186
+
187
+ kernel = kernel * window
188
+ kernel = kernel[:, None, :]
189
+ return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32))
190
+
modules/losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import modules.commons as commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+ #print(logs_p)
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l