Spaces:
Running
Running
SayaSS
commited on
Commit
·
e302df6
1
Parent(s):
762c569
update
Browse files- app.py +1 -1
- cluster/__pycache__/__init__.cpython-38.pyc +0 -0
- cvec/checkpoint_best_legacy_500.pt +0 -3
- data_utils.py +155 -0
- hubert/__pycache__/__init__.cpython-38.pyc +0 -0
- hubert/__pycache__/hubert_model.cpython-38.pyc +0 -0
- inference/__pycache__/infer_tool.cpython-38.pyc +0 -0
- inference/infer_tool.py +86 -38
- inference_main.py +49 -19
- modules/crepe.py +327 -0
- onnx/model_onnx.py +0 -328
- onnx/model_onnx_48k.py +0 -328
- onnx/onnx_export.py +0 -73
- onnx/onnx_export_48k.py +0 -73
- onnxexport/model_onnx.py +335 -0
- vdecoder/__pycache__/__init__.cpython-38.pyc +0 -0
- vdecoder/hifigan/__pycache__/env.cpython-38.pyc +0 -0
- vdecoder/hifigan/__pycache__/models.cpython-38.pyc +0 -0
- vdecoder/hifigan/__pycache__/utils.cpython-38.pyc +0 -0
app.py
CHANGED
@@ -90,7 +90,7 @@ if __name__ == '__main__':
|
|
90 |
voices.append(f"{r['ShortName']}-{r['Gender']}")
|
91 |
for f in os.listdir("models"):
|
92 |
name = f
|
93 |
-
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device
|
94 |
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
|
95 |
models.append((name, cover, create_vc_fn(model, name)))
|
96 |
with gr.Blocks() as app:
|
|
|
90 |
voices.append(f"{r['ShortName']}-{r['Gender']}")
|
91 |
for f in os.listdir("models"):
|
92 |
name = f
|
93 |
+
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device)
|
94 |
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
|
95 |
models.append((name, cover, create_vc_fn(model, name)))
|
96 |
with gr.Blocks() as app:
|
cluster/__pycache__/__init__.cpython-38.pyc
CHANGED
Binary files a/cluster/__pycache__/__init__.cpython-38.pyc and b/cluster/__pycache__/__init__.cpython-38.pyc differ
|
|
cvec/checkpoint_best_legacy_500.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:294a2e8c98136070a999e040ec98dfa5a99b88a7938181c56cc2ab0e2f6ce0e8
|
3 |
-
size 48501067
|
|
|
|
|
|
|
|
data_utils.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import modules.commons as commons
|
9 |
+
import utils
|
10 |
+
from modules.mel_processing import spectrogram_torch, spec_to_mel_torch
|
11 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
12 |
+
|
13 |
+
# import h5py
|
14 |
+
|
15 |
+
|
16 |
+
"""Multi speaker version"""
|
17 |
+
|
18 |
+
|
19 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
20 |
+
"""
|
21 |
+
1) loads audio, speaker_id, text pairs
|
22 |
+
2) normalizes text and converts them to sequences of integers
|
23 |
+
3) computes spectrograms from audio files.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, audiopaths, hparams, all_in_mem: bool = False):
|
27 |
+
self.audiopaths = load_filepaths_and_text(audiopaths)
|
28 |
+
self.max_wav_value = hparams.data.max_wav_value
|
29 |
+
self.sampling_rate = hparams.data.sampling_rate
|
30 |
+
self.filter_length = hparams.data.filter_length
|
31 |
+
self.hop_length = hparams.data.hop_length
|
32 |
+
self.win_length = hparams.data.win_length
|
33 |
+
self.sampling_rate = hparams.data.sampling_rate
|
34 |
+
self.use_sr = hparams.train.use_sr
|
35 |
+
self.spec_len = hparams.train.max_speclen
|
36 |
+
self.spk_map = hparams.spk
|
37 |
+
|
38 |
+
random.seed(1234)
|
39 |
+
random.shuffle(self.audiopaths)
|
40 |
+
|
41 |
+
self.all_in_mem = all_in_mem
|
42 |
+
if self.all_in_mem:
|
43 |
+
self.cache = [self.get_audio(p[0]) for p in self.audiopaths]
|
44 |
+
|
45 |
+
def get_audio(self, filename):
|
46 |
+
filename = filename.replace("\\", "/")
|
47 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
48 |
+
if sampling_rate != self.sampling_rate:
|
49 |
+
raise ValueError("{} SR doesn't match target {} SR".format(
|
50 |
+
sampling_rate, self.sampling_rate))
|
51 |
+
audio_norm = audio / self.max_wav_value
|
52 |
+
audio_norm = audio_norm.unsqueeze(0)
|
53 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
54 |
+
|
55 |
+
# Ideally, all data generated after Mar 25 should have .spec.pt
|
56 |
+
if os.path.exists(spec_filename):
|
57 |
+
spec = torch.load(spec_filename)
|
58 |
+
else:
|
59 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
60 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
61 |
+
center=False)
|
62 |
+
spec = torch.squeeze(spec, 0)
|
63 |
+
torch.save(spec, spec_filename)
|
64 |
+
|
65 |
+
spk = filename.split("/")[-2]
|
66 |
+
spk = torch.LongTensor([self.spk_map[spk]])
|
67 |
+
|
68 |
+
f0 = np.load(filename + ".f0.npy")
|
69 |
+
f0, uv = utils.interpolate_f0(f0)
|
70 |
+
f0 = torch.FloatTensor(f0)
|
71 |
+
uv = torch.FloatTensor(uv)
|
72 |
+
|
73 |
+
c = torch.load(filename+ ".soft.pt")
|
74 |
+
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
|
75 |
+
|
76 |
+
|
77 |
+
lmin = min(c.size(-1), spec.size(-1))
|
78 |
+
assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
|
79 |
+
assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
|
80 |
+
spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
|
81 |
+
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
82 |
+
|
83 |
+
return c, f0, spec, audio_norm, spk, uv
|
84 |
+
|
85 |
+
def random_slice(self, c, f0, spec, audio_norm, spk, uv):
|
86 |
+
# if spec.shape[1] < 30:
|
87 |
+
# print("skip too short audio:", filename)
|
88 |
+
# return None
|
89 |
+
if spec.shape[1] > 800:
|
90 |
+
start = random.randint(0, spec.shape[1]-800)
|
91 |
+
end = start + 790
|
92 |
+
spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
|
93 |
+
audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
|
94 |
+
|
95 |
+
return c, f0, spec, audio_norm, spk, uv
|
96 |
+
|
97 |
+
def __getitem__(self, index):
|
98 |
+
if self.all_in_mem:
|
99 |
+
return self.random_slice(*self.cache[index])
|
100 |
+
else:
|
101 |
+
return self.random_slice(*self.get_audio(self.audiopaths[index][0]))
|
102 |
+
|
103 |
+
def __len__(self):
|
104 |
+
return len(self.audiopaths)
|
105 |
+
|
106 |
+
|
107 |
+
class TextAudioCollate:
|
108 |
+
|
109 |
+
def __call__(self, batch):
|
110 |
+
batch = [b for b in batch if b is not None]
|
111 |
+
|
112 |
+
input_lengths, ids_sorted_decreasing = torch.sort(
|
113 |
+
torch.LongTensor([x[0].shape[1] for x in batch]),
|
114 |
+
dim=0, descending=True)
|
115 |
+
|
116 |
+
max_c_len = max([x[0].size(1) for x in batch])
|
117 |
+
max_wav_len = max([x[3].size(1) for x in batch])
|
118 |
+
|
119 |
+
lengths = torch.LongTensor(len(batch))
|
120 |
+
|
121 |
+
c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
|
122 |
+
f0_padded = torch.FloatTensor(len(batch), max_c_len)
|
123 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
|
124 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
125 |
+
spkids = torch.LongTensor(len(batch), 1)
|
126 |
+
uv_padded = torch.FloatTensor(len(batch), max_c_len)
|
127 |
+
|
128 |
+
c_padded.zero_()
|
129 |
+
spec_padded.zero_()
|
130 |
+
f0_padded.zero_()
|
131 |
+
wav_padded.zero_()
|
132 |
+
uv_padded.zero_()
|
133 |
+
|
134 |
+
for i in range(len(ids_sorted_decreasing)):
|
135 |
+
row = batch[ids_sorted_decreasing[i]]
|
136 |
+
|
137 |
+
c = row[0]
|
138 |
+
c_padded[i, :, :c.size(1)] = c
|
139 |
+
lengths[i] = c.size(1)
|
140 |
+
|
141 |
+
f0 = row[1]
|
142 |
+
f0_padded[i, :f0.size(0)] = f0
|
143 |
+
|
144 |
+
spec = row[2]
|
145 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
146 |
+
|
147 |
+
wav = row[3]
|
148 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
149 |
+
|
150 |
+
spkids[i, 0] = row[4]
|
151 |
+
|
152 |
+
uv = row[5]
|
153 |
+
uv_padded[i, :uv.size(0)] = uv
|
154 |
+
|
155 |
+
return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded
|
hubert/__pycache__/__init__.cpython-38.pyc
CHANGED
Binary files a/hubert/__pycache__/__init__.cpython-38.pyc and b/hubert/__pycache__/__init__.cpython-38.pyc differ
|
|
hubert/__pycache__/hubert_model.cpython-38.pyc
CHANGED
Binary files a/hubert/__pycache__/hubert_model.cpython-38.pyc and b/hubert/__pycache__/hubert_model.cpython-38.pyc differ
|
|
inference/__pycache__/infer_tool.cpython-38.pyc
CHANGED
Binary files a/inference/__pycache__/infer_tool.cpython-38.pyc and b/inference/__pycache__/infer_tool.cpython-38.pyc differ
|
|
inference/infer_tool.py
CHANGED
@@ -108,8 +108,11 @@ def split_list_by_n(list_collection, n, pre=0):
|
|
108 |
yield list_collection[i-pre if i-pre>=0 else i: i + n]
|
109 |
|
110 |
|
|
|
|
|
|
|
111 |
class Svc(object):
|
112 |
-
def __init__(self, net_g_path, config_path,
|
113 |
device=None,
|
114 |
cluster_model_path="logs/44k/kmeans_10000.pt"):
|
115 |
self.net_g_path = net_g_path
|
@@ -123,7 +126,7 @@ class Svc(object):
|
|
123 |
self.hop_size = self.hps_ms.data.hop_length
|
124 |
self.spk2id = self.hps_ms.spk
|
125 |
# 加载hubert
|
126 |
-
self.hubert_model =
|
127 |
self.load_model()
|
128 |
if os.path.exists(cluster_model_path):
|
129 |
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
|
@@ -142,12 +145,24 @@ class Svc(object):
|
|
142 |
|
143 |
|
144 |
|
145 |
-
def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker):
|
|
|
146 |
wav, sr = librosa.load(in_path, sr=self.target_sample)
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
f0 = f0 * 2 ** (tran / 12)
|
152 |
f0 = f0.unsqueeze(0).to(self.dev)
|
153 |
uv = uv.unsqueeze(0).to(self.dev)
|
@@ -157,7 +172,7 @@ class Svc(object):
|
|
157 |
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
|
158 |
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
159 |
|
160 |
-
if cluster_infer_ratio !=
|
161 |
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
|
162 |
cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
|
163 |
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
|
@@ -168,13 +183,17 @@ class Svc(object):
|
|
168 |
def infer(self, speaker, tran, raw_path,
|
169 |
cluster_infer_ratio=0,
|
170 |
auto_predict_f0=False,
|
171 |
-
noice_scale=0.4
|
|
|
|
|
|
|
|
|
172 |
speaker_id = self.spk2id.__dict__.get(speaker)
|
173 |
if not speaker_id and type(speaker) is int:
|
174 |
if len(self.spk2id.__dict__) >= speaker:
|
175 |
speaker_id = speaker
|
176 |
sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
|
177 |
-
c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker)
|
178 |
if "half" in self.net_g_path and torch.cuda.is_available():
|
179 |
c = c.half()
|
180 |
with torch.no_grad():
|
@@ -183,23 +202,35 @@ class Svc(object):
|
|
183 |
use_time = time.time() - start
|
184 |
print("vits use time:{}".format(use_time))
|
185 |
return audio, audio.shape[-1]
|
186 |
-
|
187 |
def clear_empty(self):
|
188 |
# 清理显存
|
189 |
torch.cuda.empty_cache()
|
190 |
|
191 |
-
def slice_inference(self,
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
wav_path = raw_audio_path
|
194 |
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
195 |
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
196 |
-
per_size = int(clip_seconds
|
197 |
-
lg_size = int(lg_num
|
198 |
-
lg_size_r = int(lg_size
|
199 |
-
lg_size_c_l = (lg_size
|
200 |
-
lg_size_c_r = lg_size
|
201 |
-
lg = np.linspace(0,
|
202 |
-
|
203 |
audio = []
|
204 |
for (slice_tag, data) in audio_data:
|
205 |
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
@@ -211,12 +242,12 @@ class Svc(object):
|
|
211 |
audio.extend(list(pad_array(_audio, length)))
|
212 |
continue
|
213 |
if per_size != 0:
|
214 |
-
datas = split_list_by_n(data, per_size,
|
215 |
else:
|
216 |
datas = [data]
|
217 |
-
for k,
|
218 |
-
per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds
|
219 |
-
if clip_seconds
|
220 |
# padd
|
221 |
pad_len = int(audio_sr * pad_seconds)
|
222 |
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
|
@@ -224,25 +255,25 @@ class Svc(object):
|
|
224 |
soundfile.write(raw_path, dat, audio_sr, format="wav")
|
225 |
raw_path.seek(0)
|
226 |
out_audio, out_sr = self.infer(spk, tran, raw_path,
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
231 |
_audio = out_audio.cpu().numpy()
|
232 |
pad_len = int(self.target_sample * pad_seconds)
|
233 |
_audio = _audio[pad_len:-pad_len]
|
234 |
_audio = pad_array(_audio, per_length)
|
235 |
-
if lg_size
|
236 |
-
lg1 = audio[-(lg_size_r
|
237 |
-
lg2 = _audio[lg_size_c_l:lg_size_c_l
|
238 |
-
lg_pre = lg1
|
239 |
-
audio = audio[0:-(lg_size_r
|
240 |
audio.extend(lg_pre)
|
241 |
-
_audio = _audio[lg_size_c_l
|
242 |
audio.extend(list(_audio))
|
243 |
return np.array(audio)
|
244 |
|
245 |
-
|
246 |
class RealTimeVC:
|
247 |
def __init__(self):
|
248 |
self.last_chunk = None
|
@@ -252,14 +283,25 @@ class RealTimeVC:
|
|
252 |
|
253 |
"""输入输出都是1维numpy 音频波形数组"""
|
254 |
|
255 |
-
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path
|
|
|
|
|
|
|
|
|
|
|
256 |
import maad
|
257 |
audio, sr = torchaudio.load(input_wav_path)
|
258 |
audio = audio.cpu().numpy()[0]
|
259 |
temp_wav = io.BytesIO()
|
260 |
if self.last_chunk is None:
|
261 |
input_wav_path.seek(0)
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
audio = audio.cpu().numpy()
|
264 |
self.last_chunk = audio[-self.pre_len:]
|
265 |
self.last_o = audio
|
@@ -268,7 +310,13 @@ class RealTimeVC:
|
|
268 |
audio = np.concatenate([self.last_chunk, audio])
|
269 |
soundfile.write(temp_wav, audio, sr, format="wav")
|
270 |
temp_wav.seek(0)
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
audio = audio.cpu().numpy()
|
273 |
ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
|
274 |
self.last_chunk = audio[-self.pre_len:]
|
|
|
108 |
yield list_collection[i-pre if i-pre>=0 else i: i + n]
|
109 |
|
110 |
|
111 |
+
class F0FilterException(Exception):
|
112 |
+
pass
|
113 |
+
|
114 |
class Svc(object):
|
115 |
+
def __init__(self, net_g_path, config_path,
|
116 |
device=None,
|
117 |
cluster_model_path="logs/44k/kmeans_10000.pt"):
|
118 |
self.net_g_path = net_g_path
|
|
|
126 |
self.hop_size = self.hps_ms.data.hop_length
|
127 |
self.spk2id = self.hps_ms.spk
|
128 |
# 加载hubert
|
129 |
+
self.hubert_model = utils.get_hubert_model().to(self.dev)
|
130 |
self.load_model()
|
131 |
if os.path.exists(cluster_model_path):
|
132 |
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
|
|
|
145 |
|
146 |
|
147 |
|
148 |
+
def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker, f0_filter ,F0_mean_pooling):
|
149 |
+
|
150 |
wav, sr = librosa.load(in_path, sr=self.target_sample)
|
151 |
+
|
152 |
+
if F0_mean_pooling == True:
|
153 |
+
f0, uv = utils.compute_f0_uv_torchcrepe(torch.FloatTensor(wav), sampling_rate=self.target_sample, hop_length=self.hop_size,device=self.dev)
|
154 |
+
if f0_filter and sum(f0) == 0:
|
155 |
+
raise F0FilterException("未检测到人声")
|
156 |
+
f0 = torch.FloatTensor(list(f0))
|
157 |
+
uv = torch.FloatTensor(list(uv))
|
158 |
+
if F0_mean_pooling == False:
|
159 |
+
f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
|
160 |
+
if f0_filter and sum(f0) == 0:
|
161 |
+
raise F0FilterException("未检测到人声")
|
162 |
+
f0, uv = utils.interpolate_f0(f0)
|
163 |
+
f0 = torch.FloatTensor(f0)
|
164 |
+
uv = torch.FloatTensor(uv)
|
165 |
+
|
166 |
f0 = f0 * 2 ** (tran / 12)
|
167 |
f0 = f0.unsqueeze(0).to(self.dev)
|
168 |
uv = uv.unsqueeze(0).to(self.dev)
|
|
|
172 |
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
|
173 |
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
|
174 |
|
175 |
+
if cluster_infer_ratio !=0:
|
176 |
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
|
177 |
cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
|
178 |
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
|
|
|
183 |
def infer(self, speaker, tran, raw_path,
|
184 |
cluster_infer_ratio=0,
|
185 |
auto_predict_f0=False,
|
186 |
+
noice_scale=0.4,
|
187 |
+
f0_filter=False,
|
188 |
+
F0_mean_pooling=False
|
189 |
+
):
|
190 |
+
|
191 |
speaker_id = self.spk2id.__dict__.get(speaker)
|
192 |
if not speaker_id and type(speaker) is int:
|
193 |
if len(self.spk2id.__dict__) >= speaker:
|
194 |
speaker_id = speaker
|
195 |
sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
|
196 |
+
c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker, f0_filter,F0_mean_pooling)
|
197 |
if "half" in self.net_g_path and torch.cuda.is_available():
|
198 |
c = c.half()
|
199 |
with torch.no_grad():
|
|
|
202 |
use_time = time.time() - start
|
203 |
print("vits use time:{}".format(use_time))
|
204 |
return audio, audio.shape[-1]
|
205 |
+
|
206 |
def clear_empty(self):
|
207 |
# 清理显存
|
208 |
torch.cuda.empty_cache()
|
209 |
|
210 |
+
def slice_inference(self,
|
211 |
+
raw_audio_path,
|
212 |
+
spk,
|
213 |
+
tran,
|
214 |
+
slice_db,
|
215 |
+
cluster_infer_ratio,
|
216 |
+
auto_predict_f0,
|
217 |
+
noice_scale,
|
218 |
+
pad_seconds=0.5,
|
219 |
+
clip_seconds=0,
|
220 |
+
lg_num=0,
|
221 |
+
lgr_num =0.75,
|
222 |
+
F0_mean_pooling = False
|
223 |
+
):
|
224 |
wav_path = raw_audio_path
|
225 |
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
226 |
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
227 |
+
per_size = int(clip_seconds*audio_sr)
|
228 |
+
lg_size = int(lg_num*audio_sr)
|
229 |
+
lg_size_r = int(lg_size*lgr_num)
|
230 |
+
lg_size_c_l = (lg_size-lg_size_r)//2
|
231 |
+
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
|
232 |
+
lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
|
233 |
+
|
234 |
audio = []
|
235 |
for (slice_tag, data) in audio_data:
|
236 |
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
|
|
242 |
audio.extend(list(pad_array(_audio, length)))
|
243 |
continue
|
244 |
if per_size != 0:
|
245 |
+
datas = split_list_by_n(data, per_size,lg_size)
|
246 |
else:
|
247 |
datas = [data]
|
248 |
+
for k,dat in enumerate(datas):
|
249 |
+
per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length
|
250 |
+
if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
|
251 |
# padd
|
252 |
pad_len = int(audio_sr * pad_seconds)
|
253 |
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
|
|
|
255 |
soundfile.write(raw_path, dat, audio_sr, format="wav")
|
256 |
raw_path.seek(0)
|
257 |
out_audio, out_sr = self.infer(spk, tran, raw_path,
|
258 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
259 |
+
auto_predict_f0=auto_predict_f0,
|
260 |
+
noice_scale=noice_scale,
|
261 |
+
F0_mean_pooling = F0_mean_pooling
|
262 |
+
)
|
263 |
_audio = out_audio.cpu().numpy()
|
264 |
pad_len = int(self.target_sample * pad_seconds)
|
265 |
_audio = _audio[pad_len:-pad_len]
|
266 |
_audio = pad_array(_audio, per_length)
|
267 |
+
if lg_size!=0 and k!=0:
|
268 |
+
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:]
|
269 |
+
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size]
|
270 |
+
lg_pre = lg1*(1-lg)+lg2*lg
|
271 |
+
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size]
|
272 |
audio.extend(lg_pre)
|
273 |
+
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:]
|
274 |
audio.extend(list(_audio))
|
275 |
return np.array(audio)
|
276 |
|
|
|
277 |
class RealTimeVC:
|
278 |
def __init__(self):
|
279 |
self.last_chunk = None
|
|
|
283 |
|
284 |
"""输入输出都是1维numpy 音频波形数组"""
|
285 |
|
286 |
+
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path,
|
287 |
+
cluster_infer_ratio=0,
|
288 |
+
auto_predict_f0=False,
|
289 |
+
noice_scale=0.4,
|
290 |
+
f0_filter=False):
|
291 |
+
|
292 |
import maad
|
293 |
audio, sr = torchaudio.load(input_wav_path)
|
294 |
audio = audio.cpu().numpy()[0]
|
295 |
temp_wav = io.BytesIO()
|
296 |
if self.last_chunk is None:
|
297 |
input_wav_path.seek(0)
|
298 |
+
|
299 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path,
|
300 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
301 |
+
auto_predict_f0=auto_predict_f0,
|
302 |
+
noice_scale=noice_scale,
|
303 |
+
f0_filter=f0_filter)
|
304 |
+
|
305 |
audio = audio.cpu().numpy()
|
306 |
self.last_chunk = audio[-self.pre_len:]
|
307 |
self.last_o = audio
|
|
|
310 |
audio = np.concatenate([self.last_chunk, audio])
|
311 |
soundfile.write(temp_wav, audio, sr, format="wav")
|
312 |
temp_wav.seek(0)
|
313 |
+
|
314 |
+
audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav,
|
315 |
+
cluster_infer_ratio=cluster_infer_ratio,
|
316 |
+
auto_predict_f0=auto_predict_f0,
|
317 |
+
noice_scale=noice_scale,
|
318 |
+
f0_filter=f0_filter)
|
319 |
+
|
320 |
audio = audio.cpu().numpy()
|
321 |
ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
|
322 |
self.last_chunk = audio[-self.pre_len:]
|
inference_main.py
CHANGED
@@ -23,17 +23,19 @@ def main():
|
|
23 |
parser = argparse.ArgumentParser(description='sovits4 inference')
|
24 |
|
25 |
# 一定要设置的部分
|
26 |
-
parser.add_argument('-m', '--model_path', type=str, default="/
|
27 |
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
|
28 |
-
parser.add_argument('-
|
|
|
29 |
parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
|
30 |
-
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['
|
31 |
|
32 |
# 可选项部分
|
33 |
-
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
|
34 |
-
|
35 |
-
parser.add_argument('-
|
36 |
-
parser.add_argument('-
|
|
|
37 |
|
38 |
# 不用动的部分
|
39 |
parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
|
@@ -41,6 +43,7 @@ def main():
|
|
41 |
parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
|
42 |
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
|
43 |
parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
|
|
|
44 |
|
45 |
args = parser.parse_args()
|
46 |
|
@@ -55,6 +58,10 @@ def main():
|
|
55 |
cluster_infer_ratio = args.cluster_infer_ratio
|
56 |
noice_scale = args.noice_scale
|
57 |
pad_seconds = args.pad_seconds
|
|
|
|
|
|
|
|
|
58 |
|
59 |
infer_tool.fill_a_to_b(trans, clean_names)
|
60 |
for clean_name, tran in zip(clean_names, trans):
|
@@ -65,35 +72,58 @@ def main():
|
|
65 |
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
66 |
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
67 |
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
for spk in spk_list:
|
70 |
audio = []
|
71 |
for (slice_tag, data) in audio_data:
|
72 |
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
73 |
-
|
74 |
-
pad_len = int(audio_sr * pad_seconds)
|
75 |
-
data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
|
76 |
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
|
77 |
-
raw_path = io.BytesIO()
|
78 |
-
soundfile.write(raw_path, data, audio_sr, format="wav")
|
79 |
-
raw_path.seek(0)
|
80 |
if slice_tag:
|
81 |
print('jump empty segment')
|
82 |
_audio = np.zeros(length)
|
|
|
|
|
|
|
|
|
83 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
|
85 |
cluster_infer_ratio=cluster_infer_ratio,
|
86 |
auto_predict_f0=auto_predict_f0,
|
87 |
-
noice_scale=noice_scale
|
|
|
88 |
)
|
89 |
_audio = out_audio.cpu().numpy()
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
key = "auto" if auto_predict_f0 else f"{tran}key"
|
95 |
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
|
96 |
-
res_path = f'./results/
|
97 |
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
|
98 |
|
99 |
if __name__ == '__main__':
|
|
|
23 |
parser = argparse.ArgumentParser(description='sovits4 inference')
|
24 |
|
25 |
# 一定要设置的部分
|
26 |
+
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径')
|
27 |
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
|
28 |
+
parser.add_argument('-cl', '--clip', type=float, default=0, help='音频强制切片,默认0为自动切片,单位为秒/s')
|
29 |
+
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下')
|
30 |
parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
|
31 |
+
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nen'], help='合成目标说话人名称')
|
32 |
|
33 |
# 可选项部分
|
34 |
+
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
|
35 |
+
parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
|
36 |
+
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则默认0即可')
|
37 |
+
parser.add_argument('-lg', '--linear_gradient', type=float, default=0, help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
|
38 |
+
parser.add_argument('-fmp', '--f0_mean_pooling', type=bool, default=False, help='是否对F0使用均值滤波器(池化),对部分哑音有改善。注意,启动该选项会导致推理速度下降,默认关闭')
|
39 |
|
40 |
# 不用动的部分
|
41 |
parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
|
|
|
43 |
parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
|
44 |
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
|
45 |
parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
|
46 |
+
parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75, help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭')
|
47 |
|
48 |
args = parser.parse_args()
|
49 |
|
|
|
58 |
cluster_infer_ratio = args.cluster_infer_ratio
|
59 |
noice_scale = args.noice_scale
|
60 |
pad_seconds = args.pad_seconds
|
61 |
+
clip = args.clip
|
62 |
+
lg = args.linear_gradient
|
63 |
+
lgr = args.linear_gradient_retain
|
64 |
+
F0_mean_pooling = args.f0_mean_pooling
|
65 |
|
66 |
infer_tool.fill_a_to_b(trans, clean_names)
|
67 |
for clean_name, tran in zip(clean_names, trans):
|
|
|
72 |
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
73 |
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
74 |
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
75 |
+
per_size = int(clip*audio_sr)
|
76 |
+
lg_size = int(lg*audio_sr)
|
77 |
+
lg_size_r = int(lg_size*lgr)
|
78 |
+
lg_size_c_l = (lg_size-lg_size_r)//2
|
79 |
+
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
|
80 |
+
lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
|
81 |
|
82 |
for spk in spk_list:
|
83 |
audio = []
|
84 |
for (slice_tag, data) in audio_data:
|
85 |
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
86 |
+
|
|
|
|
|
87 |
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
|
|
|
|
|
|
|
88 |
if slice_tag:
|
89 |
print('jump empty segment')
|
90 |
_audio = np.zeros(length)
|
91 |
+
audio.extend(list(infer_tool.pad_array(_audio, length)))
|
92 |
+
continue
|
93 |
+
if per_size != 0:
|
94 |
+
datas = infer_tool.split_list_by_n(data, per_size,lg_size)
|
95 |
else:
|
96 |
+
datas = [data]
|
97 |
+
for k,dat in enumerate(datas):
|
98 |
+
per_length = int(np.ceil(len(dat) / audio_sr * svc_model.target_sample)) if clip!=0 else length
|
99 |
+
if clip!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
|
100 |
+
# padd
|
101 |
+
pad_len = int(audio_sr * pad_seconds)
|
102 |
+
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
|
103 |
+
raw_path = io.BytesIO()
|
104 |
+
soundfile.write(raw_path, dat, audio_sr, format="wav")
|
105 |
+
raw_path.seek(0)
|
106 |
out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
|
107 |
cluster_infer_ratio=cluster_infer_ratio,
|
108 |
auto_predict_f0=auto_predict_f0,
|
109 |
+
noice_scale=noice_scale,
|
110 |
+
F0_mean_pooling = F0_mean_pooling
|
111 |
)
|
112 |
_audio = out_audio.cpu().numpy()
|
113 |
+
pad_len = int(svc_model.target_sample * pad_seconds)
|
114 |
+
_audio = _audio[pad_len:-pad_len]
|
115 |
+
_audio = infer_tool.pad_array(_audio, per_length)
|
116 |
+
if lg_size!=0 and k!=0:
|
117 |
+
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr != 1 else audio[-lg_size:]
|
118 |
+
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr != 1 else _audio[0:lg_size]
|
119 |
+
lg_pre = lg1*(1-lg)+lg2*lg
|
120 |
+
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr != 1 else audio[0:-lg_size]
|
121 |
+
audio.extend(lg_pre)
|
122 |
+
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr != 1 else _audio[lg_size:]
|
123 |
+
audio.extend(list(_audio))
|
124 |
key = "auto" if auto_predict_f0 else f"{tran}key"
|
125 |
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
|
126 |
+
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
|
127 |
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
|
128 |
|
129 |
if __name__ == '__main__':
|
modules/crepe.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional,Union
|
2 |
+
try:
|
3 |
+
from typing import Literal
|
4 |
+
except Exception as e:
|
5 |
+
from typing_extensions import Literal
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torchcrepe
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
import scipy
|
12 |
+
|
13 |
+
#from:https://github.com/fishaudio/fish-diffusion
|
14 |
+
|
15 |
+
def repeat_expand(
|
16 |
+
content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
|
17 |
+
):
|
18 |
+
"""Repeat content to target length.
|
19 |
+
This is a wrapper of torch.nn.functional.interpolate.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
content (torch.Tensor): tensor
|
23 |
+
target_len (int): target length
|
24 |
+
mode (str, optional): interpolation mode. Defaults to "nearest".
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
torch.Tensor: tensor
|
28 |
+
"""
|
29 |
+
|
30 |
+
ndim = content.ndim
|
31 |
+
|
32 |
+
if content.ndim == 1:
|
33 |
+
content = content[None, None]
|
34 |
+
elif content.ndim == 2:
|
35 |
+
content = content[None]
|
36 |
+
|
37 |
+
assert content.ndim == 3
|
38 |
+
|
39 |
+
is_np = isinstance(content, np.ndarray)
|
40 |
+
if is_np:
|
41 |
+
content = torch.from_numpy(content)
|
42 |
+
|
43 |
+
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
|
44 |
+
|
45 |
+
if is_np:
|
46 |
+
results = results.numpy()
|
47 |
+
|
48 |
+
if ndim == 1:
|
49 |
+
return results[0, 0]
|
50 |
+
elif ndim == 2:
|
51 |
+
return results[0]
|
52 |
+
|
53 |
+
|
54 |
+
class BasePitchExtractor:
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
hop_length: int = 512,
|
58 |
+
f0_min: float = 50.0,
|
59 |
+
f0_max: float = 1100.0,
|
60 |
+
keep_zeros: bool = True,
|
61 |
+
):
|
62 |
+
"""Base pitch extractor.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
hop_length (int, optional): Hop length. Defaults to 512.
|
66 |
+
f0_min (float, optional): Minimum f0. Defaults to 50.0.
|
67 |
+
f0_max (float, optional): Maximum f0. Defaults to 1100.0.
|
68 |
+
keep_zeros (bool, optional): Whether keep zeros in pitch. Defaults to True.
|
69 |
+
"""
|
70 |
+
|
71 |
+
self.hop_length = hop_length
|
72 |
+
self.f0_min = f0_min
|
73 |
+
self.f0_max = f0_max
|
74 |
+
self.keep_zeros = keep_zeros
|
75 |
+
|
76 |
+
def __call__(self, x, sampling_rate=44100, pad_to=None):
|
77 |
+
raise NotImplementedError("BasePitchExtractor is not callable.")
|
78 |
+
|
79 |
+
def post_process(self, x, sampling_rate, f0, pad_to):
|
80 |
+
if isinstance(f0, np.ndarray):
|
81 |
+
f0 = torch.from_numpy(f0).float().to(x.device)
|
82 |
+
|
83 |
+
if pad_to is None:
|
84 |
+
return f0
|
85 |
+
|
86 |
+
f0 = repeat_expand(f0, pad_to)
|
87 |
+
|
88 |
+
if self.keep_zeros:
|
89 |
+
return f0
|
90 |
+
|
91 |
+
vuv_vector = torch.zeros_like(f0)
|
92 |
+
vuv_vector[f0 > 0.0] = 1.0
|
93 |
+
vuv_vector[f0 <= 0.0] = 0.0
|
94 |
+
|
95 |
+
# 去掉0频率, 并线性插值
|
96 |
+
nzindex = torch.nonzero(f0).squeeze()
|
97 |
+
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
|
98 |
+
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
|
99 |
+
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
|
100 |
+
|
101 |
+
if f0.shape[0] <= 0:
|
102 |
+
return torch.zeros(pad_to, dtype=torch.float, device=x.device),torch.zeros(pad_to, dtype=torch.float, device=x.device)
|
103 |
+
|
104 |
+
if f0.shape[0] == 1:
|
105 |
+
return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],torch.ones(pad_to, dtype=torch.float, device=x.device)
|
106 |
+
|
107 |
+
# 大概可以用 torch 重写?
|
108 |
+
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
|
109 |
+
vuv_vector = vuv_vector.cpu().numpy()
|
110 |
+
vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
|
111 |
+
|
112 |
+
return f0,vuv_vector
|
113 |
+
|
114 |
+
|
115 |
+
class MaskedAvgPool1d(nn.Module):
|
116 |
+
def __init__(
|
117 |
+
self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
|
118 |
+
):
|
119 |
+
"""An implementation of mean pooling that supports masked values.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
kernel_size (int): The size of the median pooling window.
|
123 |
+
stride (int, optional): The stride of the median pooling window. Defaults to None.
|
124 |
+
padding (int, optional): The padding of the median pooling window. Defaults to 0.
|
125 |
+
"""
|
126 |
+
|
127 |
+
super(MaskedAvgPool1d, self).__init__()
|
128 |
+
self.kernel_size = kernel_size
|
129 |
+
self.stride = stride or kernel_size
|
130 |
+
self.padding = padding
|
131 |
+
|
132 |
+
def forward(self, x, mask=None):
|
133 |
+
ndim = x.dim()
|
134 |
+
if ndim == 2:
|
135 |
+
x = x.unsqueeze(1)
|
136 |
+
|
137 |
+
assert (
|
138 |
+
x.dim() == 3
|
139 |
+
), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"
|
140 |
+
|
141 |
+
# Apply the mask by setting masked elements to zero, or make NaNs zero
|
142 |
+
if mask is None:
|
143 |
+
mask = ~torch.isnan(x)
|
144 |
+
|
145 |
+
# Ensure mask has the same shape as the input tensor
|
146 |
+
assert x.shape == mask.shape, "Input tensor and mask must have the same shape"
|
147 |
+
|
148 |
+
masked_x = torch.where(mask, x, torch.zeros_like(x))
|
149 |
+
# Create a ones kernel with the same number of channels as the input tensor
|
150 |
+
ones_kernel = torch.ones(x.size(1), 1, self.kernel_size, device=x.device)
|
151 |
+
|
152 |
+
# Perform sum pooling
|
153 |
+
sum_pooled = nn.functional.conv1d(
|
154 |
+
masked_x,
|
155 |
+
ones_kernel,
|
156 |
+
stride=self.stride,
|
157 |
+
padding=self.padding,
|
158 |
+
groups=x.size(1),
|
159 |
+
)
|
160 |
+
|
161 |
+
# Count the non-masked (valid) elements in each pooling window
|
162 |
+
valid_count = nn.functional.conv1d(
|
163 |
+
mask.float(),
|
164 |
+
ones_kernel,
|
165 |
+
stride=self.stride,
|
166 |
+
padding=self.padding,
|
167 |
+
groups=x.size(1),
|
168 |
+
)
|
169 |
+
valid_count = valid_count.clamp(min=1) # Avoid division by zero
|
170 |
+
|
171 |
+
# Perform masked average pooling
|
172 |
+
avg_pooled = sum_pooled / valid_count
|
173 |
+
|
174 |
+
# Fill zero values with NaNs
|
175 |
+
avg_pooled[avg_pooled == 0] = float("nan")
|
176 |
+
|
177 |
+
if ndim == 2:
|
178 |
+
return avg_pooled.squeeze(1)
|
179 |
+
|
180 |
+
return avg_pooled
|
181 |
+
|
182 |
+
|
183 |
+
class MaskedMedianPool1d(nn.Module):
|
184 |
+
def __init__(
|
185 |
+
self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
|
186 |
+
):
|
187 |
+
"""An implementation of median pooling that supports masked values.
|
188 |
+
|
189 |
+
This implementation is inspired by the median pooling implementation in
|
190 |
+
https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598
|
191 |
+
|
192 |
+
Args:
|
193 |
+
kernel_size (int): The size of the median pooling window.
|
194 |
+
stride (int, optional): The stride of the median pooling window. Defaults to None.
|
195 |
+
padding (int, optional): The padding of the median pooling window. Defaults to 0.
|
196 |
+
"""
|
197 |
+
|
198 |
+
super(MaskedMedianPool1d, self).__init__()
|
199 |
+
self.kernel_size = kernel_size
|
200 |
+
self.stride = stride or kernel_size
|
201 |
+
self.padding = padding
|
202 |
+
|
203 |
+
def forward(self, x, mask=None):
|
204 |
+
ndim = x.dim()
|
205 |
+
if ndim == 2:
|
206 |
+
x = x.unsqueeze(1)
|
207 |
+
|
208 |
+
assert (
|
209 |
+
x.dim() == 3
|
210 |
+
), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"
|
211 |
+
|
212 |
+
if mask is None:
|
213 |
+
mask = ~torch.isnan(x)
|
214 |
+
|
215 |
+
assert x.shape == mask.shape, "Input tensor and mask must have the same shape"
|
216 |
+
|
217 |
+
masked_x = torch.where(mask, x, torch.zeros_like(x))
|
218 |
+
|
219 |
+
x = F.pad(masked_x, (self.padding, self.padding), mode="reflect")
|
220 |
+
mask = F.pad(
|
221 |
+
mask.float(), (self.padding, self.padding), mode="constant", value=0
|
222 |
+
)
|
223 |
+
|
224 |
+
x = x.unfold(2, self.kernel_size, self.stride)
|
225 |
+
mask = mask.unfold(2, self.kernel_size, self.stride)
|
226 |
+
|
227 |
+
x = x.contiguous().view(x.size()[:3] + (-1,))
|
228 |
+
mask = mask.contiguous().view(mask.size()[:3] + (-1,)).to(x.device)
|
229 |
+
|
230 |
+
# Combine the mask with the input tensor
|
231 |
+
#x_masked = torch.where(mask.bool(), x, torch.fill_(torch.zeros_like(x),float("inf")))
|
232 |
+
x_masked = torch.where(mask.bool(), x, torch.FloatTensor([float("inf")]).to(x.device))
|
233 |
+
|
234 |
+
# Sort the masked tensor along the last dimension
|
235 |
+
x_sorted, _ = torch.sort(x_masked, dim=-1)
|
236 |
+
|
237 |
+
# Compute the count of non-masked (valid) values
|
238 |
+
valid_count = mask.sum(dim=-1)
|
239 |
+
|
240 |
+
# Calculate the index of the median value for each pooling window
|
241 |
+
median_idx = (torch.div((valid_count - 1), 2, rounding_mode='trunc')).clamp(min=0)
|
242 |
+
|
243 |
+
# Gather the median values using the calculated indices
|
244 |
+
median_pooled = x_sorted.gather(-1, median_idx.unsqueeze(-1).long()).squeeze(-1)
|
245 |
+
|
246 |
+
# Fill infinite values with NaNs
|
247 |
+
median_pooled[torch.isinf(median_pooled)] = float("nan")
|
248 |
+
|
249 |
+
if ndim == 2:
|
250 |
+
return median_pooled.squeeze(1)
|
251 |
+
|
252 |
+
return median_pooled
|
253 |
+
|
254 |
+
|
255 |
+
class CrepePitchExtractor(BasePitchExtractor):
|
256 |
+
def __init__(
|
257 |
+
self,
|
258 |
+
hop_length: int = 512,
|
259 |
+
f0_min: float = 50.0,
|
260 |
+
f0_max: float = 1100.0,
|
261 |
+
threshold: float = 0.05,
|
262 |
+
keep_zeros: bool = False,
|
263 |
+
device = None,
|
264 |
+
model: Literal["full", "tiny"] = "full",
|
265 |
+
use_fast_filters: bool = True,
|
266 |
+
):
|
267 |
+
super().__init__(hop_length, f0_min, f0_max, keep_zeros)
|
268 |
+
|
269 |
+
self.threshold = threshold
|
270 |
+
self.model = model
|
271 |
+
self.use_fast_filters = use_fast_filters
|
272 |
+
self.hop_length = hop_length
|
273 |
+
if device is None:
|
274 |
+
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
275 |
+
else:
|
276 |
+
self.dev = torch.device(device)
|
277 |
+
if self.use_fast_filters:
|
278 |
+
self.median_filter = MaskedMedianPool1d(3, 1, 1).to(device)
|
279 |
+
self.mean_filter = MaskedAvgPool1d(3, 1, 1).to(device)
|
280 |
+
|
281 |
+
def __call__(self, x, sampling_rate=44100, pad_to=None):
|
282 |
+
"""Extract pitch using crepe.
|
283 |
+
|
284 |
+
|
285 |
+
Args:
|
286 |
+
x (torch.Tensor): Audio signal, shape (1, T).
|
287 |
+
sampling_rate (int, optional): Sampling rate. Defaults to 44100.
|
288 |
+
pad_to (int, optional): Pad to length. Defaults to None.
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
torch.Tensor: Pitch, shape (T // hop_length,).
|
292 |
+
"""
|
293 |
+
|
294 |
+
assert x.ndim == 2, f"Expected 2D tensor, got {x.ndim}D tensor."
|
295 |
+
assert x.shape[0] == 1, f"Expected 1 channel, got {x.shape[0]} channels."
|
296 |
+
|
297 |
+
x = x.to(self.dev)
|
298 |
+
f0, pd = torchcrepe.predict(
|
299 |
+
x,
|
300 |
+
sampling_rate,
|
301 |
+
self.hop_length,
|
302 |
+
self.f0_min,
|
303 |
+
self.f0_max,
|
304 |
+
pad=True,
|
305 |
+
model=self.model,
|
306 |
+
batch_size=1024,
|
307 |
+
device=x.device,
|
308 |
+
return_periodicity=True,
|
309 |
+
)
|
310 |
+
|
311 |
+
# Filter, remove silence, set uv threshold, refer to the original warehouse readme
|
312 |
+
if self.use_fast_filters:
|
313 |
+
pd = self.median_filter(pd)
|
314 |
+
else:
|
315 |
+
pd = torchcrepe.filter.median(pd, 3)
|
316 |
+
|
317 |
+
pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, 512)
|
318 |
+
f0 = torchcrepe.threshold.At(self.threshold)(f0, pd)
|
319 |
+
|
320 |
+
if self.use_fast_filters:
|
321 |
+
f0 = self.mean_filter(f0)
|
322 |
+
else:
|
323 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
324 |
+
|
325 |
+
f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0]
|
326 |
+
|
327 |
+
return self.post_process(x, sampling_rate, f0, pad_to)
|
onnx/model_onnx.py
DELETED
@@ -1,328 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
import modules.attentions as attentions
|
8 |
-
import modules.commons as commons
|
9 |
-
import modules.modules as modules
|
10 |
-
|
11 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
12 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
-
from modules.commons import init_weights, get_padding
|
14 |
-
from vdecoder.hifigan.models import Generator
|
15 |
-
from utils import f0_to_coarse
|
16 |
-
|
17 |
-
class ResidualCouplingBlock(nn.Module):
|
18 |
-
def __init__(self,
|
19 |
-
channels,
|
20 |
-
hidden_channels,
|
21 |
-
kernel_size,
|
22 |
-
dilation_rate,
|
23 |
-
n_layers,
|
24 |
-
n_flows=4,
|
25 |
-
gin_channels=0):
|
26 |
-
super().__init__()
|
27 |
-
self.channels = channels
|
28 |
-
self.hidden_channels = hidden_channels
|
29 |
-
self.kernel_size = kernel_size
|
30 |
-
self.dilation_rate = dilation_rate
|
31 |
-
self.n_layers = n_layers
|
32 |
-
self.n_flows = n_flows
|
33 |
-
self.gin_channels = gin_channels
|
34 |
-
|
35 |
-
self.flows = nn.ModuleList()
|
36 |
-
for i in range(n_flows):
|
37 |
-
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
38 |
-
self.flows.append(modules.Flip())
|
39 |
-
|
40 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
41 |
-
if not reverse:
|
42 |
-
for flow in self.flows:
|
43 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
44 |
-
else:
|
45 |
-
for flow in reversed(self.flows):
|
46 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
47 |
-
return x
|
48 |
-
|
49 |
-
|
50 |
-
class Encoder(nn.Module):
|
51 |
-
def __init__(self,
|
52 |
-
in_channels,
|
53 |
-
out_channels,
|
54 |
-
hidden_channels,
|
55 |
-
kernel_size,
|
56 |
-
dilation_rate,
|
57 |
-
n_layers,
|
58 |
-
gin_channels=0):
|
59 |
-
super().__init__()
|
60 |
-
self.in_channels = in_channels
|
61 |
-
self.out_channels = out_channels
|
62 |
-
self.hidden_channels = hidden_channels
|
63 |
-
self.kernel_size = kernel_size
|
64 |
-
self.dilation_rate = dilation_rate
|
65 |
-
self.n_layers = n_layers
|
66 |
-
self.gin_channels = gin_channels
|
67 |
-
|
68 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
69 |
-
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
70 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
71 |
-
|
72 |
-
def forward(self, x, x_lengths, g=None):
|
73 |
-
# print(x.shape,x_lengths.shape)
|
74 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
75 |
-
x = self.pre(x) * x_mask
|
76 |
-
x = self.enc(x, x_mask, g=g)
|
77 |
-
stats = self.proj(x) * x_mask
|
78 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
79 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
80 |
-
return z, m, logs, x_mask
|
81 |
-
|
82 |
-
|
83 |
-
class TextEncoder(nn.Module):
|
84 |
-
def __init__(self,
|
85 |
-
in_channels,
|
86 |
-
out_channels,
|
87 |
-
hidden_channels,
|
88 |
-
kernel_size,
|
89 |
-
dilation_rate,
|
90 |
-
n_layers,
|
91 |
-
gin_channels=0,
|
92 |
-
filter_channels=None,
|
93 |
-
n_heads=None,
|
94 |
-
p_dropout=None):
|
95 |
-
super().__init__()
|
96 |
-
self.in_channels = in_channels
|
97 |
-
self.out_channels = out_channels
|
98 |
-
self.hidden_channels = hidden_channels
|
99 |
-
self.kernel_size = kernel_size
|
100 |
-
self.dilation_rate = dilation_rate
|
101 |
-
self.n_layers = n_layers
|
102 |
-
self.gin_channels = gin_channels
|
103 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
104 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
105 |
-
self.f0_emb = nn.Embedding(256, hidden_channels)
|
106 |
-
|
107 |
-
self.enc_ = attentions.Encoder(
|
108 |
-
hidden_channels,
|
109 |
-
filter_channels,
|
110 |
-
n_heads,
|
111 |
-
n_layers,
|
112 |
-
kernel_size,
|
113 |
-
p_dropout)
|
114 |
-
|
115 |
-
def forward(self, x, x_lengths, f0=None):
|
116 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
117 |
-
x = self.pre(x) * x_mask
|
118 |
-
x = x + self.f0_emb(f0.long()).transpose(1,2)
|
119 |
-
x = self.enc_(x * x_mask, x_mask)
|
120 |
-
stats = self.proj(x) * x_mask
|
121 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
122 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
123 |
-
|
124 |
-
return z, m, logs, x_mask
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
class DiscriminatorP(torch.nn.Module):
|
129 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
130 |
-
super(DiscriminatorP, self).__init__()
|
131 |
-
self.period = period
|
132 |
-
self.use_spectral_norm = use_spectral_norm
|
133 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
134 |
-
self.convs = nn.ModuleList([
|
135 |
-
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
136 |
-
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
137 |
-
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
138 |
-
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
139 |
-
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
140 |
-
])
|
141 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
142 |
-
|
143 |
-
def forward(self, x):
|
144 |
-
fmap = []
|
145 |
-
|
146 |
-
# 1d to 2d
|
147 |
-
b, c, t = x.shape
|
148 |
-
if t % self.period != 0: # pad first
|
149 |
-
n_pad = self.period - (t % self.period)
|
150 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
151 |
-
t = t + n_pad
|
152 |
-
x = x.view(b, c, t // self.period, self.period)
|
153 |
-
|
154 |
-
for l in self.convs:
|
155 |
-
x = l(x)
|
156 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
157 |
-
fmap.append(x)
|
158 |
-
x = self.conv_post(x)
|
159 |
-
fmap.append(x)
|
160 |
-
x = torch.flatten(x, 1, -1)
|
161 |
-
|
162 |
-
return x, fmap
|
163 |
-
|
164 |
-
|
165 |
-
class DiscriminatorS(torch.nn.Module):
|
166 |
-
def __init__(self, use_spectral_norm=False):
|
167 |
-
super(DiscriminatorS, self).__init__()
|
168 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
169 |
-
self.convs = nn.ModuleList([
|
170 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
171 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
172 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
173 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
174 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
175 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
176 |
-
])
|
177 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
178 |
-
|
179 |
-
def forward(self, x):
|
180 |
-
fmap = []
|
181 |
-
|
182 |
-
for l in self.convs:
|
183 |
-
x = l(x)
|
184 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
185 |
-
fmap.append(x)
|
186 |
-
x = self.conv_post(x)
|
187 |
-
fmap.append(x)
|
188 |
-
x = torch.flatten(x, 1, -1)
|
189 |
-
|
190 |
-
return x, fmap
|
191 |
-
|
192 |
-
|
193 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
194 |
-
def __init__(self, use_spectral_norm=False):
|
195 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
196 |
-
periods = [2,3,5,7,11]
|
197 |
-
|
198 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
199 |
-
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
200 |
-
self.discriminators = nn.ModuleList(discs)
|
201 |
-
|
202 |
-
def forward(self, y, y_hat):
|
203 |
-
y_d_rs = []
|
204 |
-
y_d_gs = []
|
205 |
-
fmap_rs = []
|
206 |
-
fmap_gs = []
|
207 |
-
for i, d in enumerate(self.discriminators):
|
208 |
-
y_d_r, fmap_r = d(y)
|
209 |
-
y_d_g, fmap_g = d(y_hat)
|
210 |
-
y_d_rs.append(y_d_r)
|
211 |
-
y_d_gs.append(y_d_g)
|
212 |
-
fmap_rs.append(fmap_r)
|
213 |
-
fmap_gs.append(fmap_g)
|
214 |
-
|
215 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
216 |
-
|
217 |
-
|
218 |
-
class SpeakerEncoder(torch.nn.Module):
|
219 |
-
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
220 |
-
super(SpeakerEncoder, self).__init__()
|
221 |
-
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
222 |
-
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
223 |
-
self.relu = nn.ReLU()
|
224 |
-
|
225 |
-
def forward(self, mels):
|
226 |
-
self.lstm.flatten_parameters()
|
227 |
-
_, (hidden, _) = self.lstm(mels)
|
228 |
-
embeds_raw = self.relu(self.linear(hidden[-1]))
|
229 |
-
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
230 |
-
|
231 |
-
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
232 |
-
mel_slices = []
|
233 |
-
for i in range(0, total_frames-partial_frames, partial_hop):
|
234 |
-
mel_range = torch.arange(i, i+partial_frames)
|
235 |
-
mel_slices.append(mel_range)
|
236 |
-
|
237 |
-
return mel_slices
|
238 |
-
|
239 |
-
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
240 |
-
mel_len = mel.size(1)
|
241 |
-
last_mel = mel[:,-partial_frames:]
|
242 |
-
|
243 |
-
if mel_len > partial_frames:
|
244 |
-
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
245 |
-
mels = list(mel[:,s] for s in mel_slices)
|
246 |
-
mels.append(last_mel)
|
247 |
-
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
248 |
-
|
249 |
-
with torch.no_grad():
|
250 |
-
partial_embeds = self(mels)
|
251 |
-
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
252 |
-
#embed = embed / torch.linalg.norm(embed, 2)
|
253 |
-
else:
|
254 |
-
with torch.no_grad():
|
255 |
-
embed = self(last_mel)
|
256 |
-
|
257 |
-
return embed
|
258 |
-
|
259 |
-
|
260 |
-
class SynthesizerTrn(nn.Module):
|
261 |
-
"""
|
262 |
-
Synthesizer for Training
|
263 |
-
"""
|
264 |
-
|
265 |
-
def __init__(self,
|
266 |
-
spec_channels,
|
267 |
-
segment_size,
|
268 |
-
inter_channels,
|
269 |
-
hidden_channels,
|
270 |
-
filter_channels,
|
271 |
-
n_heads,
|
272 |
-
n_layers,
|
273 |
-
kernel_size,
|
274 |
-
p_dropout,
|
275 |
-
resblock,
|
276 |
-
resblock_kernel_sizes,
|
277 |
-
resblock_dilation_sizes,
|
278 |
-
upsample_rates,
|
279 |
-
upsample_initial_channel,
|
280 |
-
upsample_kernel_sizes,
|
281 |
-
gin_channels,
|
282 |
-
ssl_dim,
|
283 |
-
n_speakers,
|
284 |
-
**kwargs):
|
285 |
-
|
286 |
-
super().__init__()
|
287 |
-
self.spec_channels = spec_channels
|
288 |
-
self.inter_channels = inter_channels
|
289 |
-
self.hidden_channels = hidden_channels
|
290 |
-
self.filter_channels = filter_channels
|
291 |
-
self.n_heads = n_heads
|
292 |
-
self.n_layers = n_layers
|
293 |
-
self.kernel_size = kernel_size
|
294 |
-
self.p_dropout = p_dropout
|
295 |
-
self.resblock = resblock
|
296 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
297 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
298 |
-
self.upsample_rates = upsample_rates
|
299 |
-
self.upsample_initial_channel = upsample_initial_channel
|
300 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
301 |
-
self.segment_size = segment_size
|
302 |
-
self.gin_channels = gin_channels
|
303 |
-
self.ssl_dim = ssl_dim
|
304 |
-
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
305 |
-
|
306 |
-
self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
|
307 |
-
hps = {
|
308 |
-
"sampling_rate": 32000,
|
309 |
-
"inter_channels": 192,
|
310 |
-
"resblock": "1",
|
311 |
-
"resblock_kernel_sizes": [3, 7, 11],
|
312 |
-
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
313 |
-
"upsample_rates": [10, 8, 2, 2],
|
314 |
-
"upsample_initial_channel": 512,
|
315 |
-
"upsample_kernel_sizes": [16, 16, 4, 4],
|
316 |
-
"gin_channels": 256,
|
317 |
-
}
|
318 |
-
self.dec = Generator(h=hps)
|
319 |
-
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
320 |
-
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
321 |
-
|
322 |
-
def forward(self, c, c_lengths, f0, g=None):
|
323 |
-
g = self.emb_g(g.unsqueeze(0)).transpose(1,2)
|
324 |
-
z_p, m_p, logs_p, c_mask = self.enc_p_(c.transpose(1,2), c_lengths, f0=f0_to_coarse(f0))
|
325 |
-
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
326 |
-
o = self.dec(z * c_mask, g=g, f0=f0.float())
|
327 |
-
return o
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onnx/model_onnx_48k.py
DELETED
@@ -1,328 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
import modules.attentions as attentions
|
8 |
-
import modules.commons as commons
|
9 |
-
import modules.modules as modules
|
10 |
-
|
11 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
12 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
-
from modules.commons import init_weights, get_padding
|
14 |
-
from vdecoder.hifigan.models import Generator
|
15 |
-
from utils import f0_to_coarse
|
16 |
-
|
17 |
-
class ResidualCouplingBlock(nn.Module):
|
18 |
-
def __init__(self,
|
19 |
-
channels,
|
20 |
-
hidden_channels,
|
21 |
-
kernel_size,
|
22 |
-
dilation_rate,
|
23 |
-
n_layers,
|
24 |
-
n_flows=4,
|
25 |
-
gin_channels=0):
|
26 |
-
super().__init__()
|
27 |
-
self.channels = channels
|
28 |
-
self.hidden_channels = hidden_channels
|
29 |
-
self.kernel_size = kernel_size
|
30 |
-
self.dilation_rate = dilation_rate
|
31 |
-
self.n_layers = n_layers
|
32 |
-
self.n_flows = n_flows
|
33 |
-
self.gin_channels = gin_channels
|
34 |
-
|
35 |
-
self.flows = nn.ModuleList()
|
36 |
-
for i in range(n_flows):
|
37 |
-
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
38 |
-
self.flows.append(modules.Flip())
|
39 |
-
|
40 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
41 |
-
if not reverse:
|
42 |
-
for flow in self.flows:
|
43 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
44 |
-
else:
|
45 |
-
for flow in reversed(self.flows):
|
46 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
47 |
-
return x
|
48 |
-
|
49 |
-
|
50 |
-
class Encoder(nn.Module):
|
51 |
-
def __init__(self,
|
52 |
-
in_channels,
|
53 |
-
out_channels,
|
54 |
-
hidden_channels,
|
55 |
-
kernel_size,
|
56 |
-
dilation_rate,
|
57 |
-
n_layers,
|
58 |
-
gin_channels=0):
|
59 |
-
super().__init__()
|
60 |
-
self.in_channels = in_channels
|
61 |
-
self.out_channels = out_channels
|
62 |
-
self.hidden_channels = hidden_channels
|
63 |
-
self.kernel_size = kernel_size
|
64 |
-
self.dilation_rate = dilation_rate
|
65 |
-
self.n_layers = n_layers
|
66 |
-
self.gin_channels = gin_channels
|
67 |
-
|
68 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
69 |
-
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
70 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
71 |
-
|
72 |
-
def forward(self, x, x_lengths, g=None):
|
73 |
-
# print(x.shape,x_lengths.shape)
|
74 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
75 |
-
x = self.pre(x) * x_mask
|
76 |
-
x = self.enc(x, x_mask, g=g)
|
77 |
-
stats = self.proj(x) * x_mask
|
78 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
79 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
80 |
-
return z, m, logs, x_mask
|
81 |
-
|
82 |
-
|
83 |
-
class TextEncoder(nn.Module):
|
84 |
-
def __init__(self,
|
85 |
-
in_channels,
|
86 |
-
out_channels,
|
87 |
-
hidden_channels,
|
88 |
-
kernel_size,
|
89 |
-
dilation_rate,
|
90 |
-
n_layers,
|
91 |
-
gin_channels=0,
|
92 |
-
filter_channels=None,
|
93 |
-
n_heads=None,
|
94 |
-
p_dropout=None):
|
95 |
-
super().__init__()
|
96 |
-
self.in_channels = in_channels
|
97 |
-
self.out_channels = out_channels
|
98 |
-
self.hidden_channels = hidden_channels
|
99 |
-
self.kernel_size = kernel_size
|
100 |
-
self.dilation_rate = dilation_rate
|
101 |
-
self.n_layers = n_layers
|
102 |
-
self.gin_channels = gin_channels
|
103 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
104 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
105 |
-
self.f0_emb = nn.Embedding(256, hidden_channels)
|
106 |
-
|
107 |
-
self.enc_ = attentions.Encoder(
|
108 |
-
hidden_channels,
|
109 |
-
filter_channels,
|
110 |
-
n_heads,
|
111 |
-
n_layers,
|
112 |
-
kernel_size,
|
113 |
-
p_dropout)
|
114 |
-
|
115 |
-
def forward(self, x, x_lengths, f0=None):
|
116 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
117 |
-
x = self.pre(x) * x_mask
|
118 |
-
x = x + self.f0_emb(f0.long()).transpose(1,2)
|
119 |
-
x = self.enc_(x * x_mask, x_mask)
|
120 |
-
stats = self.proj(x) * x_mask
|
121 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
122 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
123 |
-
|
124 |
-
return z, m, logs, x_mask
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
class DiscriminatorP(torch.nn.Module):
|
129 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
130 |
-
super(DiscriminatorP, self).__init__()
|
131 |
-
self.period = period
|
132 |
-
self.use_spectral_norm = use_spectral_norm
|
133 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
134 |
-
self.convs = nn.ModuleList([
|
135 |
-
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
136 |
-
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
137 |
-
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
138 |
-
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
139 |
-
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
140 |
-
])
|
141 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
142 |
-
|
143 |
-
def forward(self, x):
|
144 |
-
fmap = []
|
145 |
-
|
146 |
-
# 1d to 2d
|
147 |
-
b, c, t = x.shape
|
148 |
-
if t % self.period != 0: # pad first
|
149 |
-
n_pad = self.period - (t % self.period)
|
150 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
151 |
-
t = t + n_pad
|
152 |
-
x = x.view(b, c, t // self.period, self.period)
|
153 |
-
|
154 |
-
for l in self.convs:
|
155 |
-
x = l(x)
|
156 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
157 |
-
fmap.append(x)
|
158 |
-
x = self.conv_post(x)
|
159 |
-
fmap.append(x)
|
160 |
-
x = torch.flatten(x, 1, -1)
|
161 |
-
|
162 |
-
return x, fmap
|
163 |
-
|
164 |
-
|
165 |
-
class DiscriminatorS(torch.nn.Module):
|
166 |
-
def __init__(self, use_spectral_norm=False):
|
167 |
-
super(DiscriminatorS, self).__init__()
|
168 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
169 |
-
self.convs = nn.ModuleList([
|
170 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
171 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
172 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
173 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
174 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
175 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
176 |
-
])
|
177 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
178 |
-
|
179 |
-
def forward(self, x):
|
180 |
-
fmap = []
|
181 |
-
|
182 |
-
for l in self.convs:
|
183 |
-
x = l(x)
|
184 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
185 |
-
fmap.append(x)
|
186 |
-
x = self.conv_post(x)
|
187 |
-
fmap.append(x)
|
188 |
-
x = torch.flatten(x, 1, -1)
|
189 |
-
|
190 |
-
return x, fmap
|
191 |
-
|
192 |
-
|
193 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
194 |
-
def __init__(self, use_spectral_norm=False):
|
195 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
196 |
-
periods = [2,3,5,7,11]
|
197 |
-
|
198 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
199 |
-
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
200 |
-
self.discriminators = nn.ModuleList(discs)
|
201 |
-
|
202 |
-
def forward(self, y, y_hat):
|
203 |
-
y_d_rs = []
|
204 |
-
y_d_gs = []
|
205 |
-
fmap_rs = []
|
206 |
-
fmap_gs = []
|
207 |
-
for i, d in enumerate(self.discriminators):
|
208 |
-
y_d_r, fmap_r = d(y)
|
209 |
-
y_d_g, fmap_g = d(y_hat)
|
210 |
-
y_d_rs.append(y_d_r)
|
211 |
-
y_d_gs.append(y_d_g)
|
212 |
-
fmap_rs.append(fmap_r)
|
213 |
-
fmap_gs.append(fmap_g)
|
214 |
-
|
215 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
216 |
-
|
217 |
-
|
218 |
-
class SpeakerEncoder(torch.nn.Module):
|
219 |
-
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
220 |
-
super(SpeakerEncoder, self).__init__()
|
221 |
-
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
222 |
-
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
223 |
-
self.relu = nn.ReLU()
|
224 |
-
|
225 |
-
def forward(self, mels):
|
226 |
-
self.lstm.flatten_parameters()
|
227 |
-
_, (hidden, _) = self.lstm(mels)
|
228 |
-
embeds_raw = self.relu(self.linear(hidden[-1]))
|
229 |
-
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
230 |
-
|
231 |
-
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
232 |
-
mel_slices = []
|
233 |
-
for i in range(0, total_frames-partial_frames, partial_hop):
|
234 |
-
mel_range = torch.arange(i, i+partial_frames)
|
235 |
-
mel_slices.append(mel_range)
|
236 |
-
|
237 |
-
return mel_slices
|
238 |
-
|
239 |
-
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
240 |
-
mel_len = mel.size(1)
|
241 |
-
last_mel = mel[:,-partial_frames:]
|
242 |
-
|
243 |
-
if mel_len > partial_frames:
|
244 |
-
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
245 |
-
mels = list(mel[:,s] for s in mel_slices)
|
246 |
-
mels.append(last_mel)
|
247 |
-
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
248 |
-
|
249 |
-
with torch.no_grad():
|
250 |
-
partial_embeds = self(mels)
|
251 |
-
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
252 |
-
#embed = embed / torch.linalg.norm(embed, 2)
|
253 |
-
else:
|
254 |
-
with torch.no_grad():
|
255 |
-
embed = self(last_mel)
|
256 |
-
|
257 |
-
return embed
|
258 |
-
|
259 |
-
|
260 |
-
class SynthesizerTrn(nn.Module):
|
261 |
-
"""
|
262 |
-
Synthesizer for Training
|
263 |
-
"""
|
264 |
-
|
265 |
-
def __init__(self,
|
266 |
-
spec_channels,
|
267 |
-
segment_size,
|
268 |
-
inter_channels,
|
269 |
-
hidden_channels,
|
270 |
-
filter_channels,
|
271 |
-
n_heads,
|
272 |
-
n_layers,
|
273 |
-
kernel_size,
|
274 |
-
p_dropout,
|
275 |
-
resblock,
|
276 |
-
resblock_kernel_sizes,
|
277 |
-
resblock_dilation_sizes,
|
278 |
-
upsample_rates,
|
279 |
-
upsample_initial_channel,
|
280 |
-
upsample_kernel_sizes,
|
281 |
-
gin_channels,
|
282 |
-
ssl_dim,
|
283 |
-
n_speakers,
|
284 |
-
**kwargs):
|
285 |
-
|
286 |
-
super().__init__()
|
287 |
-
self.spec_channels = spec_channels
|
288 |
-
self.inter_channels = inter_channels
|
289 |
-
self.hidden_channels = hidden_channels
|
290 |
-
self.filter_channels = filter_channels
|
291 |
-
self.n_heads = n_heads
|
292 |
-
self.n_layers = n_layers
|
293 |
-
self.kernel_size = kernel_size
|
294 |
-
self.p_dropout = p_dropout
|
295 |
-
self.resblock = resblock
|
296 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
297 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
298 |
-
self.upsample_rates = upsample_rates
|
299 |
-
self.upsample_initial_channel = upsample_initial_channel
|
300 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
301 |
-
self.segment_size = segment_size
|
302 |
-
self.gin_channels = gin_channels
|
303 |
-
self.ssl_dim = ssl_dim
|
304 |
-
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
305 |
-
|
306 |
-
self.enc_p_ = TextEncoder(ssl_dim, inter_channels, hidden_channels, 5, 1, 16,0, filter_channels, n_heads, p_dropout)
|
307 |
-
hps = {
|
308 |
-
"sampling_rate": 48000,
|
309 |
-
"inter_channels": 192,
|
310 |
-
"resblock": "1",
|
311 |
-
"resblock_kernel_sizes": [3, 7, 11],
|
312 |
-
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
313 |
-
"upsample_rates": [10, 8, 2, 2],
|
314 |
-
"upsample_initial_channel": 512,
|
315 |
-
"upsample_kernel_sizes": [16, 16, 4, 4],
|
316 |
-
"gin_channels": 256,
|
317 |
-
}
|
318 |
-
self.dec = Generator(h=hps)
|
319 |
-
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
320 |
-
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
321 |
-
|
322 |
-
def forward(self, c, c_lengths, f0, g=None):
|
323 |
-
g = self.emb_g(g.unsqueeze(0)).transpose(1,2)
|
324 |
-
z_p, m_p, logs_p, c_mask = self.enc_p_(c.transpose(1,2), c_lengths, f0=f0_to_coarse(f0))
|
325 |
-
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
326 |
-
o = self.dec(z * c_mask, g=g, f0=f0.float())
|
327 |
-
return o
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onnx/onnx_export.py
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import time
|
3 |
-
import numpy as np
|
4 |
-
import onnx
|
5 |
-
from onnxsim import simplify
|
6 |
-
import onnxruntime as ort
|
7 |
-
import onnxoptimizer
|
8 |
-
import torch
|
9 |
-
from model_onnx import SynthesizerTrn
|
10 |
-
import utils
|
11 |
-
from hubert import hubert_model_onnx
|
12 |
-
|
13 |
-
def main(HubertExport,NetExport):
|
14 |
-
|
15 |
-
path = "NyaruTaffy"
|
16 |
-
|
17 |
-
if(HubertExport):
|
18 |
-
device = torch.device("cuda")
|
19 |
-
hubert_soft = utils.get_hubert_model()
|
20 |
-
test_input = torch.rand(1, 1, 16000)
|
21 |
-
input_names = ["source"]
|
22 |
-
output_names = ["embed"]
|
23 |
-
torch.onnx.export(hubert_soft.to(device),
|
24 |
-
test_input.to(device),
|
25 |
-
"hubert3.0.onnx",
|
26 |
-
dynamic_axes={
|
27 |
-
"source": {
|
28 |
-
2: "sample_length"
|
29 |
-
}
|
30 |
-
},
|
31 |
-
verbose=False,
|
32 |
-
opset_version=13,
|
33 |
-
input_names=input_names,
|
34 |
-
output_names=output_names)
|
35 |
-
if(NetExport):
|
36 |
-
device = torch.device("cuda")
|
37 |
-
hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
38 |
-
SVCVITS = SynthesizerTrn(
|
39 |
-
hps.data.filter_length // 2 + 1,
|
40 |
-
hps.train.segment_size // hps.data.hop_length,
|
41 |
-
**hps.model)
|
42 |
-
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
|
43 |
-
_ = SVCVITS.eval().to(device)
|
44 |
-
for i in SVCVITS.parameters():
|
45 |
-
i.requires_grad = False
|
46 |
-
test_hidden_unit = torch.rand(1, 50, 256)
|
47 |
-
test_lengths = torch.LongTensor([50])
|
48 |
-
test_pitch = torch.rand(1, 50)
|
49 |
-
test_sid = torch.LongTensor([0])
|
50 |
-
input_names = ["hidden_unit", "lengths", "pitch", "sid"]
|
51 |
-
output_names = ["audio", ]
|
52 |
-
SVCVITS.eval()
|
53 |
-
torch.onnx.export(SVCVITS,
|
54 |
-
(
|
55 |
-
test_hidden_unit.to(device),
|
56 |
-
test_lengths.to(device),
|
57 |
-
test_pitch.to(device),
|
58 |
-
test_sid.to(device)
|
59 |
-
),
|
60 |
-
f"checkpoints/{path}/model.onnx",
|
61 |
-
dynamic_axes={
|
62 |
-
"hidden_unit": [0, 1],
|
63 |
-
"pitch": [1]
|
64 |
-
},
|
65 |
-
do_constant_folding=False,
|
66 |
-
opset_version=16,
|
67 |
-
verbose=False,
|
68 |
-
input_names=input_names,
|
69 |
-
output_names=output_names)
|
70 |
-
|
71 |
-
|
72 |
-
if __name__ == '__main__':
|
73 |
-
main(False,True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onnx/onnx_export_48k.py
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import time
|
3 |
-
import numpy as np
|
4 |
-
import onnx
|
5 |
-
from onnxsim import simplify
|
6 |
-
import onnxruntime as ort
|
7 |
-
import onnxoptimizer
|
8 |
-
import torch
|
9 |
-
from model_onnx_48k import SynthesizerTrn
|
10 |
-
import utils
|
11 |
-
from hubert import hubert_model_onnx
|
12 |
-
|
13 |
-
def main(HubertExport,NetExport):
|
14 |
-
|
15 |
-
path = "NyaruTaffy"
|
16 |
-
|
17 |
-
if(HubertExport):
|
18 |
-
device = torch.device("cuda")
|
19 |
-
hubert_soft = hubert_model_onnx.hubert_soft("hubert/model.pt")
|
20 |
-
test_input = torch.rand(1, 1, 16000)
|
21 |
-
input_names = ["source"]
|
22 |
-
output_names = ["embed"]
|
23 |
-
torch.onnx.export(hubert_soft.to(device),
|
24 |
-
test_input.to(device),
|
25 |
-
"hubert3.0.onnx",
|
26 |
-
dynamic_axes={
|
27 |
-
"source": {
|
28 |
-
2: "sample_length"
|
29 |
-
}
|
30 |
-
},
|
31 |
-
verbose=False,
|
32 |
-
opset_version=13,
|
33 |
-
input_names=input_names,
|
34 |
-
output_names=output_names)
|
35 |
-
if(NetExport):
|
36 |
-
device = torch.device("cuda")
|
37 |
-
hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
38 |
-
SVCVITS = SynthesizerTrn(
|
39 |
-
hps.data.filter_length // 2 + 1,
|
40 |
-
hps.train.segment_size // hps.data.hop_length,
|
41 |
-
**hps.model)
|
42 |
-
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
|
43 |
-
_ = SVCVITS.eval().to(device)
|
44 |
-
for i in SVCVITS.parameters():
|
45 |
-
i.requires_grad = False
|
46 |
-
test_hidden_unit = torch.rand(1, 50, 256)
|
47 |
-
test_lengths = torch.LongTensor([50])
|
48 |
-
test_pitch = torch.rand(1, 50)
|
49 |
-
test_sid = torch.LongTensor([0])
|
50 |
-
input_names = ["hidden_unit", "lengths", "pitch", "sid"]
|
51 |
-
output_names = ["audio", ]
|
52 |
-
SVCVITS.eval()
|
53 |
-
torch.onnx.export(SVCVITS,
|
54 |
-
(
|
55 |
-
test_hidden_unit.to(device),
|
56 |
-
test_lengths.to(device),
|
57 |
-
test_pitch.to(device),
|
58 |
-
test_sid.to(device)
|
59 |
-
),
|
60 |
-
f"checkpoints/{path}/model.onnx",
|
61 |
-
dynamic_axes={
|
62 |
-
"hidden_unit": [0, 1],
|
63 |
-
"pitch": [1]
|
64 |
-
},
|
65 |
-
do_constant_folding=False,
|
66 |
-
opset_version=16,
|
67 |
-
verbose=False,
|
68 |
-
input_names=input_names,
|
69 |
-
output_names=output_names)
|
70 |
-
|
71 |
-
|
72 |
-
if __name__ == '__main__':
|
73 |
-
main(False,True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onnxexport/model_onnx.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
import modules.attentions as attentions
|
6 |
+
import modules.commons as commons
|
7 |
+
import modules.modules as modules
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
11 |
+
|
12 |
+
import utils
|
13 |
+
from modules.commons import init_weights, get_padding
|
14 |
+
from vdecoder.hifigan.models import Generator
|
15 |
+
from utils import f0_to_coarse
|
16 |
+
|
17 |
+
|
18 |
+
class ResidualCouplingBlock(nn.Module):
|
19 |
+
def __init__(self,
|
20 |
+
channels,
|
21 |
+
hidden_channels,
|
22 |
+
kernel_size,
|
23 |
+
dilation_rate,
|
24 |
+
n_layers,
|
25 |
+
n_flows=4,
|
26 |
+
gin_channels=0):
|
27 |
+
super().__init__()
|
28 |
+
self.channels = channels
|
29 |
+
self.hidden_channels = hidden_channels
|
30 |
+
self.kernel_size = kernel_size
|
31 |
+
self.dilation_rate = dilation_rate
|
32 |
+
self.n_layers = n_layers
|
33 |
+
self.n_flows = n_flows
|
34 |
+
self.gin_channels = gin_channels
|
35 |
+
|
36 |
+
self.flows = nn.ModuleList()
|
37 |
+
for i in range(n_flows):
|
38 |
+
self.flows.append(
|
39 |
+
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
|
40 |
+
gin_channels=gin_channels, mean_only=True))
|
41 |
+
self.flows.append(modules.Flip())
|
42 |
+
|
43 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
44 |
+
if not reverse:
|
45 |
+
for flow in self.flows:
|
46 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
47 |
+
else:
|
48 |
+
for flow in reversed(self.flows):
|
49 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
class Encoder(nn.Module):
|
54 |
+
def __init__(self,
|
55 |
+
in_channels,
|
56 |
+
out_channels,
|
57 |
+
hidden_channels,
|
58 |
+
kernel_size,
|
59 |
+
dilation_rate,
|
60 |
+
n_layers,
|
61 |
+
gin_channels=0):
|
62 |
+
super().__init__()
|
63 |
+
self.in_channels = in_channels
|
64 |
+
self.out_channels = out_channels
|
65 |
+
self.hidden_channels = hidden_channels
|
66 |
+
self.kernel_size = kernel_size
|
67 |
+
self.dilation_rate = dilation_rate
|
68 |
+
self.n_layers = n_layers
|
69 |
+
self.gin_channels = gin_channels
|
70 |
+
|
71 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
72 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
73 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
74 |
+
|
75 |
+
def forward(self, x, x_lengths, g=None):
|
76 |
+
# print(x.shape,x_lengths.shape)
|
77 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
78 |
+
x = self.pre(x) * x_mask
|
79 |
+
x = self.enc(x, x_mask, g=g)
|
80 |
+
stats = self.proj(x) * x_mask
|
81 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
82 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
83 |
+
return z, m, logs, x_mask
|
84 |
+
|
85 |
+
|
86 |
+
class TextEncoder(nn.Module):
|
87 |
+
def __init__(self,
|
88 |
+
out_channels,
|
89 |
+
hidden_channels,
|
90 |
+
kernel_size,
|
91 |
+
n_layers,
|
92 |
+
gin_channels=0,
|
93 |
+
filter_channels=None,
|
94 |
+
n_heads=None,
|
95 |
+
p_dropout=None):
|
96 |
+
super().__init__()
|
97 |
+
self.out_channels = out_channels
|
98 |
+
self.hidden_channels = hidden_channels
|
99 |
+
self.kernel_size = kernel_size
|
100 |
+
self.n_layers = n_layers
|
101 |
+
self.gin_channels = gin_channels
|
102 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
103 |
+
self.f0_emb = nn.Embedding(256, hidden_channels)
|
104 |
+
|
105 |
+
self.enc_ = attentions.Encoder(
|
106 |
+
hidden_channels,
|
107 |
+
filter_channels,
|
108 |
+
n_heads,
|
109 |
+
n_layers,
|
110 |
+
kernel_size,
|
111 |
+
p_dropout)
|
112 |
+
|
113 |
+
def forward(self, x, x_mask, f0=None, z=None):
|
114 |
+
x = x + self.f0_emb(f0).transpose(1, 2)
|
115 |
+
x = self.enc_(x * x_mask, x_mask)
|
116 |
+
stats = self.proj(x) * x_mask
|
117 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
118 |
+
z = (m + z * torch.exp(logs)) * x_mask
|
119 |
+
return z, m, logs, x_mask
|
120 |
+
|
121 |
+
|
122 |
+
class DiscriminatorP(torch.nn.Module):
|
123 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
124 |
+
super(DiscriminatorP, self).__init__()
|
125 |
+
self.period = period
|
126 |
+
self.use_spectral_norm = use_spectral_norm
|
127 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
128 |
+
self.convs = nn.ModuleList([
|
129 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
130 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
131 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
132 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
133 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
134 |
+
])
|
135 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
fmap = []
|
139 |
+
|
140 |
+
# 1d to 2d
|
141 |
+
b, c, t = x.shape
|
142 |
+
if t % self.period != 0: # pad first
|
143 |
+
n_pad = self.period - (t % self.period)
|
144 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
145 |
+
t = t + n_pad
|
146 |
+
x = x.view(b, c, t // self.period, self.period)
|
147 |
+
|
148 |
+
for l in self.convs:
|
149 |
+
x = l(x)
|
150 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
151 |
+
fmap.append(x)
|
152 |
+
x = self.conv_post(x)
|
153 |
+
fmap.append(x)
|
154 |
+
x = torch.flatten(x, 1, -1)
|
155 |
+
|
156 |
+
return x, fmap
|
157 |
+
|
158 |
+
|
159 |
+
class DiscriminatorS(torch.nn.Module):
|
160 |
+
def __init__(self, use_spectral_norm=False):
|
161 |
+
super(DiscriminatorS, self).__init__()
|
162 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
163 |
+
self.convs = nn.ModuleList([
|
164 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
165 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
166 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
167 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
168 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
169 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
170 |
+
])
|
171 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
fmap = []
|
175 |
+
|
176 |
+
for l in self.convs:
|
177 |
+
x = l(x)
|
178 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
179 |
+
fmap.append(x)
|
180 |
+
x = self.conv_post(x)
|
181 |
+
fmap.append(x)
|
182 |
+
x = torch.flatten(x, 1, -1)
|
183 |
+
|
184 |
+
return x, fmap
|
185 |
+
|
186 |
+
|
187 |
+
class F0Decoder(nn.Module):
|
188 |
+
def __init__(self,
|
189 |
+
out_channels,
|
190 |
+
hidden_channels,
|
191 |
+
filter_channels,
|
192 |
+
n_heads,
|
193 |
+
n_layers,
|
194 |
+
kernel_size,
|
195 |
+
p_dropout,
|
196 |
+
spk_channels=0):
|
197 |
+
super().__init__()
|
198 |
+
self.out_channels = out_channels
|
199 |
+
self.hidden_channels = hidden_channels
|
200 |
+
self.filter_channels = filter_channels
|
201 |
+
self.n_heads = n_heads
|
202 |
+
self.n_layers = n_layers
|
203 |
+
self.kernel_size = kernel_size
|
204 |
+
self.p_dropout = p_dropout
|
205 |
+
self.spk_channels = spk_channels
|
206 |
+
|
207 |
+
self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
|
208 |
+
self.decoder = attentions.FFT(
|
209 |
+
hidden_channels,
|
210 |
+
filter_channels,
|
211 |
+
n_heads,
|
212 |
+
n_layers,
|
213 |
+
kernel_size,
|
214 |
+
p_dropout)
|
215 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
216 |
+
self.f0_prenet = nn.Conv1d(1, hidden_channels, 3, padding=1)
|
217 |
+
self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
|
218 |
+
|
219 |
+
def forward(self, x, norm_f0, x_mask, spk_emb=None):
|
220 |
+
x = torch.detach(x)
|
221 |
+
if spk_emb is not None:
|
222 |
+
x = x + self.cond(spk_emb)
|
223 |
+
x += self.f0_prenet(norm_f0)
|
224 |
+
x = self.prenet(x) * x_mask
|
225 |
+
x = self.decoder(x * x_mask, x_mask)
|
226 |
+
x = self.proj(x) * x_mask
|
227 |
+
return x
|
228 |
+
|
229 |
+
|
230 |
+
class SynthesizerTrn(nn.Module):
|
231 |
+
"""
|
232 |
+
Synthesizer for Training
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self,
|
236 |
+
spec_channels,
|
237 |
+
segment_size,
|
238 |
+
inter_channels,
|
239 |
+
hidden_channels,
|
240 |
+
filter_channels,
|
241 |
+
n_heads,
|
242 |
+
n_layers,
|
243 |
+
kernel_size,
|
244 |
+
p_dropout,
|
245 |
+
resblock,
|
246 |
+
resblock_kernel_sizes,
|
247 |
+
resblock_dilation_sizes,
|
248 |
+
upsample_rates,
|
249 |
+
upsample_initial_channel,
|
250 |
+
upsample_kernel_sizes,
|
251 |
+
gin_channels,
|
252 |
+
ssl_dim,
|
253 |
+
n_speakers,
|
254 |
+
sampling_rate=44100,
|
255 |
+
**kwargs):
|
256 |
+
super().__init__()
|
257 |
+
self.spec_channels = spec_channels
|
258 |
+
self.inter_channels = inter_channels
|
259 |
+
self.hidden_channels = hidden_channels
|
260 |
+
self.filter_channels = filter_channels
|
261 |
+
self.n_heads = n_heads
|
262 |
+
self.n_layers = n_layers
|
263 |
+
self.kernel_size = kernel_size
|
264 |
+
self.p_dropout = p_dropout
|
265 |
+
self.resblock = resblock
|
266 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
267 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
268 |
+
self.upsample_rates = upsample_rates
|
269 |
+
self.upsample_initial_channel = upsample_initial_channel
|
270 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
271 |
+
self.segment_size = segment_size
|
272 |
+
self.gin_channels = gin_channels
|
273 |
+
self.ssl_dim = ssl_dim
|
274 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
275 |
+
|
276 |
+
self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
|
277 |
+
|
278 |
+
self.enc_p = TextEncoder(
|
279 |
+
inter_channels,
|
280 |
+
hidden_channels,
|
281 |
+
filter_channels=filter_channels,
|
282 |
+
n_heads=n_heads,
|
283 |
+
n_layers=n_layers,
|
284 |
+
kernel_size=kernel_size,
|
285 |
+
p_dropout=p_dropout
|
286 |
+
)
|
287 |
+
hps = {
|
288 |
+
"sampling_rate": sampling_rate,
|
289 |
+
"inter_channels": inter_channels,
|
290 |
+
"resblock": resblock,
|
291 |
+
"resblock_kernel_sizes": resblock_kernel_sizes,
|
292 |
+
"resblock_dilation_sizes": resblock_dilation_sizes,
|
293 |
+
"upsample_rates": upsample_rates,
|
294 |
+
"upsample_initial_channel": upsample_initial_channel,
|
295 |
+
"upsample_kernel_sizes": upsample_kernel_sizes,
|
296 |
+
"gin_channels": gin_channels,
|
297 |
+
}
|
298 |
+
self.dec = Generator(h=hps)
|
299 |
+
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
300 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
301 |
+
self.f0_decoder = F0Decoder(
|
302 |
+
1,
|
303 |
+
hidden_channels,
|
304 |
+
filter_channels,
|
305 |
+
n_heads,
|
306 |
+
n_layers,
|
307 |
+
kernel_size,
|
308 |
+
p_dropout,
|
309 |
+
spk_channels=gin_channels
|
310 |
+
)
|
311 |
+
self.emb_uv = nn.Embedding(2, hidden_channels)
|
312 |
+
self.predict_f0 = False
|
313 |
+
|
314 |
+
def forward(self, c, f0, mel2ph, uv, noise=None, g=None):
|
315 |
+
|
316 |
+
decoder_inp = F.pad(c, [0, 0, 1, 0])
|
317 |
+
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, c.shape[-1]])
|
318 |
+
c = torch.gather(decoder_inp, 1, mel2ph_).transpose(1, 2) # [B, T, H]
|
319 |
+
|
320 |
+
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
321 |
+
g = g.unsqueeze(0)
|
322 |
+
g = self.emb_g(g).transpose(1, 2)
|
323 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
|
324 |
+
x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2)
|
325 |
+
|
326 |
+
if self.predict_f0:
|
327 |
+
lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
328 |
+
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
|
329 |
+
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
330 |
+
f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
|
331 |
+
|
332 |
+
z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), z=noise)
|
333 |
+
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
334 |
+
o = self.dec(z * c_mask, g=g, f0=f0)
|
335 |
+
return o
|
vdecoder/__pycache__/__init__.cpython-38.pyc
CHANGED
Binary files a/vdecoder/__pycache__/__init__.cpython-38.pyc and b/vdecoder/__pycache__/__init__.cpython-38.pyc differ
|
|
vdecoder/hifigan/__pycache__/env.cpython-38.pyc
CHANGED
Binary files a/vdecoder/hifigan/__pycache__/env.cpython-38.pyc and b/vdecoder/hifigan/__pycache__/env.cpython-38.pyc differ
|
|
vdecoder/hifigan/__pycache__/models.cpython-38.pyc
CHANGED
Binary files a/vdecoder/hifigan/__pycache__/models.cpython-38.pyc and b/vdecoder/hifigan/__pycache__/models.cpython-38.pyc differ
|
|
vdecoder/hifigan/__pycache__/utils.cpython-38.pyc
CHANGED
Binary files a/vdecoder/hifigan/__pycache__/utils.cpython-38.pyc and b/vdecoder/hifigan/__pycache__/utils.cpython-38.pyc differ
|
|