File size: 3,394 Bytes
d0890d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b0c0d4
 
d0890d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# coding=utf-8
import time
import gradio as gr
import librosa
import numpy as np
import soundfile
import io
from inference.infer_tool import Svc
import logging
logging.getLogger("numba").setLevel(logging.WARNING)

model_path = "model/model.pth"
config_path = "model/config.json"
svc_model = Svc(model_path, config_path)


def sovits(input_audio, vc_transform):
    start = time.perf_counter()
    if input_audio is None:
        return "请上传音频", None, None
    sampling_rate, audio = input_audio
    duration = audio.shape[0] / sampling_rate
    if duration > 30:
        return "请上传小于30s的音频,长音频的转换请在本地进行", None, None
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != 24000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=24000)
    out_wav_path = io.BytesIO()
    soundfile.write(out_wav_path, audio, 24000, format="wav")
    out_wav_path.seek(0)
    sid = 'xiaoke'
    out_audio, out_sr = svc_model.infer(sid, vc_transform, out_wav_path)
    _audio = out_audio.cpu().numpy()
    return "生成成功!", (48000, _audio), f"生成耗时 {round(time.perf_counter()-start, 2)} s"

download_audio_js = """
() =>{{
    let root = document.querySelector("body > gradio-app");
    if (root.shadowRoot != null)
        root = root.shadowRoot;
    let audio = root.querySelector("#{audio_id}").querySelector("audio");
    if (audio == undefined)
        return;
    audio = audio.src;
    let oA = document.createElement("a");
    oA.download = Math.floor(Math.random()*100000000)+'.wav';
    oA.href = audio;
    document.body.appendChild(oA);
    oA.click();
    oA.remove();
}}
"""

if __name__ == '__main__':
    with gr.Blocks() as app:
        gr.Markdown(
            "# <center> AI小可\n"
            "<div align='center'>输入音频应为尽可能干净的人声</div>"
            '<div align="center"><a><font color="#dd0000">可使用UVR5/demucs分离人声和BGM</font></a></div>'
        )
        with gr.Row():
            with gr.Column():
                input_audio = gr.inputs.Audio(label="待转换音频")
                vc = gr.inputs.Number(label="音高调整", default=0)
                btn = gr.Button(value="生成")
            with gr.Column():
                o1 = gr.Textbox(label="Output Message")
                o2 = gr.Audio(label="Output Audio", elem_id=f"vc-audio")
                o3 = gr.Textbox(label="Extra Info")
                download = gr.Button("Download Audio")
            btn.click(sovits, inputs=[input_audio, vc], outputs=[o1, o2, o3])
            download.click(None, [], [], _js=download_audio_js.format(audio_id=f"vc-audio"))
        with gr.Row():
            gr.Examples(
                label="示例",
                examples=[
                    ["examples/你够不够我这样洒脱.wav", 0],
                    ["examples/CREAM - Girl Like Me_(Vocals).wav", 0],
                    ["examples/何嘉嘉Gaga - 难念的经_(Vocals).wav", 0],
                    ["examples/何嘉嘉Gaga - 难念的经2_(Vocals).wav", 0],
                ],
                inputs=[input_audio, vc],
                outputs=[o1, o2, o3],
                fn=sovits,
                cache_examples=True)
    app.queue(concurrency_count=1).launch()