Spaces:
Sleeping
Sleeping
File size: 3,026 Bytes
9b5b26a c19d193 6aae614 8fe992b 9b5b26a 5df72d6 9b5b26a 1bbc1f1 94ad18c 1bbc1f1 eec6439 9b5b26a 1bbc1f1 eec6439 87b53a2 1bbc1f1 9b5b26a 94ad18c 469d60b 87b53a2 1bbc1f1 87b53a2 1bbc1f1 87b53a2 94ad18c eec6439 75b7b6c 1bbc1f1 eec6439 1bbc1f1 b70e0c1 9b5b26a 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b 895dd79 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def buscar_datos_gob(term: str, page_size: int = 10, page: int = 0) -> dict:
"""
Search for datasets in the datos.gob.es API.
Args:
term: The search term for datasets.
page_size: Number of results per page (max 50).
page: The page number for pagination.
Returns:
A dictionary with the relevant datasets, showing the title, description, publisher, and access URL.
"""
import requests
base_url = "https://datos.gob.es/apidata/catalog/dataset"
params = {
"q": term,
"_pageSize": page_size,
"_page": page
}
headers = {
"Accept": "application/json",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36"
}
try:
response = requests.get(base_url, params=params, headers=headers)
response.raise_for_status()
data = response.json()
# Extraer los datasets de la respuesta
datasets = []
for item in data.get("result", {}).get("items", []):
dataset_info = {
"title": item.get("title", "No Title"),
"description": item.get("description", {}).get("text", "No Description"),
"publisher": item.get("publisher", "Unknown Publisher"),
"accessURL": item.get("distribution", {}).get("accessURL", "No URL Available"),
"modified": item.get("modified", "No Date Available"),
"license": item.get("license", "No License Available")
}
datasets.append(dataset_info)
return {"datasets": datasets}
except requests.exceptions.RequestException as e:
return {"error": f"Request Error: {str(e)}"}
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, buscar_datos_gob], # ✅ Ahora sí se usa
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |