File size: 3,026 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
1bbc1f1
94ad18c
1bbc1f1
eec6439
9b5b26a
1bbc1f1
 
 
eec6439
87b53a2
1bbc1f1
9b5b26a
94ad18c
 
469d60b
87b53a2
 
 
1bbc1f1
87b53a2
 
1bbc1f1
 
87b53a2
94ad18c
eec6439
 
75b7b6c
1bbc1f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec6439
1bbc1f1
 
b70e0c1
9b5b26a
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
895dd79
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def buscar_datos_gob(term: str, page_size: int = 10, page: int = 0) -> dict:
    """
    Search for datasets in the datos.gob.es API.

    Args:
        term: The search term for datasets.
        page_size: Number of results per page (max 50).
        page: The page number for pagination.

    Returns:
        A dictionary with the relevant datasets, showing the title, description, publisher, and access URL.
    """
    import requests

    base_url = "https://datos.gob.es/apidata/catalog/dataset"
    params = {
        "q": term,
        "_pageSize": page_size,
        "_page": page
    }
    headers = {
        "Accept": "application/json",
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36"
    }

    try:
        response = requests.get(base_url, params=params, headers=headers)
        response.raise_for_status()
        data = response.json()

        # Extraer los datasets de la respuesta
        datasets = []
        for item in data.get("result", {}).get("items", []):
            dataset_info = {
                "title": item.get("title", "No Title"),
                "description": item.get("description", {}).get("text", "No Description"),
                "publisher": item.get("publisher", "Unknown Publisher"),
                "accessURL": item.get("distribution", {}).get("accessURL", "No URL Available"),
                "modified": item.get("modified", "No Date Available"),
                "license": item.get("license", "No License Available")
            }
            datasets.append(dataset_info)

        return {"datasets": datasets}

    except requests.exceptions.RequestException as e:
        return {"error": f"Request Error: {str(e)}"}



final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, buscar_datos_gob],  # ✅ Ahora sí se usa
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()