Spaces:
Runtime error
Runtime error
File size: 4,283 Bytes
9b5b26a c19d193 6aae614 27f26c0 8fe992b 9b5b26a 5df72d6 930fb8e 9b5b26a 27f26c0 9b5b26a 27f26c0 9b5b26a 27f26c0 9b5b26a 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b 930fb8e 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from bs4 import BeautifulSoup
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def scrape_webpage(url: str, tag: str = "p", class_name: str = None) -> dict:
"""Extrae contenido de una página web según una etiqueta HTML y clase opcional.
Args:
url: URL de la página a scrapear.
tag: Etiqueta HTML a extraer (por defecto <p>).
class_name: Clase CSS opcional para filtrar resultados.
Returns:
Un diccionario con el contenido extraído.
"""
try:
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
if class_name:
elements = soup.find_all(tag, class_=class_name)
else:
elements = soup.find_all(tag)
extracted_data = [element.get_text(strip=True) for element in elements]
return {"url": url, "scraped_data": extracted_data[:20]} # Limita a 10 resultados
except requests.exceptions.RequestException as e:
return {"error": f"Error al acceder a la URL: {str(e)}"}
except Exception as e:
return {"error": f"Error inesperado: {str(e)}"}
@tool
def extract_metadata_from_url(url: str) -> dict:
"""Extrae todos los metadatos de una página web.
Args:
url: La URL de la página web a analizar.
Returns:
Un diccionario con los metadatos encontrados.
"""
try:
# Obtener el contenido de la página
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
response.raise_for_status() # Lanza un error si el request falla
# Parsear el contenido HTML con BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')
# Extraer los metadatos de la página
metadata = {}
for meta in soup.find_all('meta'):
if 'name' in meta.attrs and 'content' in meta.attrs:
metadata[meta['name']] = meta['content']
elif 'property' in meta.attrs and 'content' in meta.attrs:
metadata[meta['property']] = meta['content']
return metadata if metadata else {"error": "No se encontraron metadatos en la página."}
except requests.exceptions.RequestException as e:
return {"error": f"Error al acceder a la URL: {str(e)}"}
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, extract_metadata_from_url, scrape_webpage], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |