Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,93 @@
|
|
1 |
-
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
2 |
import datetime
|
3 |
import requests
|
4 |
import pytz
|
5 |
import yaml
|
6 |
-
|
|
|
7 |
from bs4 import BeautifulSoup
|
8 |
-
|
|
|
9 |
from Gradio_UI import GradioUI
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
@tool
|
13 |
def scrape_webpage(url: str, tag: str = "p", class_name: str = None) -> dict:
|
14 |
"""Extrae contenido de una página web según una etiqueta HTML y clase opcional.
|
15 |
-
|
16 |
Args:
|
17 |
url: URL de la página a scrapear.
|
18 |
tag: Etiqueta HTML a extraer (por defecto <p>).
|
@@ -22,12 +97,12 @@ def scrape_webpage(url: str, tag: str = "p", class_name: str = None) -> dict:
|
|
22 |
Un diccionario con el contenido extraído.
|
23 |
"""
|
24 |
try:
|
25 |
-
headers = {
|
26 |
response = requests.get(url, headers=headers)
|
27 |
response.raise_for_status()
|
28 |
|
29 |
-
soup = BeautifulSoup(response.text,
|
30 |
-
|
31 |
if class_name:
|
32 |
elements = soup.find_all(tag, class_=class_name)
|
33 |
else:
|
@@ -35,7 +110,7 @@ def scrape_webpage(url: str, tag: str = "p", class_name: str = None) -> dict:
|
|
35 |
|
36 |
extracted_data = [element.get_text(strip=True) for element in elements]
|
37 |
|
38 |
-
return {"url": url, "scraped_data": extracted_data[:20]} # Limita a
|
39 |
|
40 |
except requests.exceptions.RequestException as e:
|
41 |
return {"error": f"Error al acceder a la URL: {str(e)}"}
|
@@ -46,7 +121,7 @@ def scrape_webpage(url: str, tag: str = "p", class_name: str = None) -> dict:
|
|
46 |
@tool
|
47 |
def extract_metadata_from_url(url: str) -> dict:
|
48 |
"""Extrae todos los metadatos de una página web.
|
49 |
-
|
50 |
Args:
|
51 |
url: La URL de la página web a analizar.
|
52 |
|
@@ -54,73 +129,66 @@ def extract_metadata_from_url(url: str) -> dict:
|
|
54 |
Un diccionario con los metadatos encontrados.
|
55 |
"""
|
56 |
try:
|
57 |
-
|
58 |
-
headers = {'User-Agent': 'Mozilla/5.0'}
|
59 |
response = requests.get(url, headers=headers)
|
60 |
-
response.raise_for_status()
|
61 |
|
62 |
-
|
63 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
64 |
|
65 |
-
# Extraer los metadatos de la página
|
66 |
metadata = {}
|
67 |
-
for meta in soup.find_all(
|
68 |
-
if
|
69 |
-
metadata[meta[
|
70 |
-
elif
|
71 |
-
metadata[meta[
|
72 |
|
73 |
return metadata if metadata else {"error": "No se encontraron metadatos en la página."}
|
74 |
|
75 |
except requests.exceptions.RequestException as e:
|
76 |
return {"error": f"Error al acceder a la URL: {str(e)}"}
|
77 |
|
|
|
78 |
@tool
|
79 |
def get_current_time_in_timezone(timezone: str) -> str:
|
80 |
-
"""
|
|
|
81 |
Args:
|
82 |
-
timezone:
|
|
|
|
|
|
|
83 |
"""
|
84 |
try:
|
85 |
-
# Create timezone object
|
86 |
tz = pytz.timezone(timezone)
|
87 |
-
# Get current time in that timezone
|
88 |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
89 |
-
return f"
|
90 |
except Exception as e:
|
91 |
-
return f"Error
|
92 |
|
93 |
|
94 |
final_answer = FinalAnswerTool()
|
95 |
|
96 |
-
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
97 |
-
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
|
98 |
-
|
99 |
-
model = HfApiModel(
|
100 |
-
max_tokens=2096,
|
101 |
-
temperature=0.5,
|
102 |
-
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
|
103 |
-
custom_role_conversions=None,
|
104 |
-
)
|
105 |
-
|
106 |
-
|
107 |
# Import tool from Hub
|
108 |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
109 |
|
110 |
-
with open("prompts.yaml",
|
111 |
prompt_templates = yaml.safe_load(stream)
|
112 |
-
|
113 |
agent = CodeAgent(
|
114 |
model=model,
|
115 |
-
tools=[
|
|
|
|
|
|
|
|
|
|
|
116 |
max_steps=6,
|
117 |
verbosity_level=1,
|
118 |
grammar=None,
|
119 |
planning_interval=None,
|
120 |
name=None,
|
121 |
description=None,
|
122 |
-
prompt_templates=prompt_templates
|
123 |
)
|
124 |
|
125 |
-
|
126 |
-
GradioUI(agent).launch()
|
|
|
1 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
|
2 |
import datetime
|
3 |
import requests
|
4 |
import pytz
|
5 |
import yaml
|
6 |
+
import os
|
7 |
+
import nltk
|
8 |
from bs4 import BeautifulSoup
|
9 |
+
from nltk.tokenize import sent_tokenize
|
10 |
+
from tools.final_answer import FinalAnswerTool
|
11 |
from Gradio_UI import GradioUI
|
12 |
|
13 |
+
# Descargar tokenizer de NLTK si no está disponible
|
14 |
+
nltk.download("punkt")
|
15 |
+
|
16 |
+
# Configurar el modelo de resumen desde Hugging Face en SmolAgents
|
17 |
+
model = HfApiModel(
|
18 |
+
max_tokens=2096,
|
19 |
+
temperature=0.5,
|
20 |
+
model_id="facebook/bart-large-cnn", # Modelo de resumen
|
21 |
+
custom_role_conversions=None,
|
22 |
+
)
|
23 |
+
|
24 |
+
@tool
|
25 |
+
def save_scraped_data_as_markdown(scraped_data: dict, filename: str = None) -> str:
|
26 |
+
"""Convierte el contenido scrapeado en un archivo Markdown mejor estructurado.
|
27 |
+
|
28 |
+
Mejoras:
|
29 |
+
- Resumen automático del contenido con NLP.
|
30 |
+
- Uso de encabezados, listas y negritas en Markdown.
|
31 |
+
- Guardado con timestamp para evitar sobrescribir archivos.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
scraped_data: Diccionario con la URL y los datos extraídos.
|
35 |
+
filename: Nombre del archivo de salida (si no se da, se genera con timestamp).
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
Mensaje de confirmación o error.
|
39 |
+
"""
|
40 |
+
try:
|
41 |
+
url = scraped_data.get("url", "Desconocido")
|
42 |
+
content_list = scraped_data.get("scraped_data", [])
|
43 |
+
|
44 |
+
if not content_list:
|
45 |
+
return "No hay datos para guardar en Markdown."
|
46 |
+
|
47 |
+
# Tokenizar en oraciones
|
48 |
+
tokenized_sentences = [sent_tokenize(text) for text in content_list]
|
49 |
+
formatted_content = "\n\n".join([" ".join(sentences) for sentences in tokenized_sentences])
|
50 |
+
|
51 |
+
# Hacer resumen del contenido (limitamos a 1024 tokens por si el texto es muy largo)
|
52 |
+
if len(formatted_content.split()) > 100:
|
53 |
+
summarized_text = model.query(
|
54 |
+
prompt=f"Resume el siguiente texto:\n\n{formatted_content[:1024]}",
|
55 |
+
max_length=150,
|
56 |
+
min_length=50,
|
57 |
+
)
|
58 |
+
else:
|
59 |
+
summarized_text = formatted_content
|
60 |
+
|
61 |
+
# Mejorar la estructura Markdown
|
62 |
+
markdown_content = f"# Contenido extraído de {url}\n\n"
|
63 |
+
markdown_content += f"## Resumen\n\n> {summarized_text}\n\n"
|
64 |
+
markdown_content += "## Contenido Completo\n\n"
|
65 |
+
|
66 |
+
for paragraph in formatted_content.split("\n\n"):
|
67 |
+
if len(paragraph.split()) > 10: # Si el párrafo es largo, lo tratamos como sección
|
68 |
+
markdown_content += f"### {paragraph[:50]}...\n\n{paragraph}\n\n"
|
69 |
+
else:
|
70 |
+
markdown_content += f"- **{paragraph}**\n\n"
|
71 |
+
|
72 |
+
# Generar nombre con timestamp si no se proporciona
|
73 |
+
if not filename:
|
74 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
75 |
+
filename = f"scraped_{timestamp}.md"
|
76 |
+
|
77 |
+
# Guardar en un archivo Markdown
|
78 |
+
with open(filename, "w", encoding="utf-8") as file:
|
79 |
+
file.write(markdown_content)
|
80 |
+
|
81 |
+
return f"El contenido scrapeado se ha guardado en {filename}"
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
return f"Error al generar el archivo Markdown: {str(e)}"
|
85 |
+
|
86 |
+
|
87 |
@tool
|
88 |
def scrape_webpage(url: str, tag: str = "p", class_name: str = None) -> dict:
|
89 |
"""Extrae contenido de una página web según una etiqueta HTML y clase opcional.
|
90 |
+
|
91 |
Args:
|
92 |
url: URL de la página a scrapear.
|
93 |
tag: Etiqueta HTML a extraer (por defecto <p>).
|
|
|
97 |
Un diccionario con el contenido extraído.
|
98 |
"""
|
99 |
try:
|
100 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
101 |
response = requests.get(url, headers=headers)
|
102 |
response.raise_for_status()
|
103 |
|
104 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
105 |
+
|
106 |
if class_name:
|
107 |
elements = soup.find_all(tag, class_=class_name)
|
108 |
else:
|
|
|
110 |
|
111 |
extracted_data = [element.get_text(strip=True) for element in elements]
|
112 |
|
113 |
+
return {"url": url, "scraped_data": extracted_data[:20]} # Limita a 20 resultados
|
114 |
|
115 |
except requests.exceptions.RequestException as e:
|
116 |
return {"error": f"Error al acceder a la URL: {str(e)}"}
|
|
|
121 |
@tool
|
122 |
def extract_metadata_from_url(url: str) -> dict:
|
123 |
"""Extrae todos los metadatos de una página web.
|
124 |
+
|
125 |
Args:
|
126 |
url: La URL de la página web a analizar.
|
127 |
|
|
|
129 |
Un diccionario con los metadatos encontrados.
|
130 |
"""
|
131 |
try:
|
132 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
|
|
133 |
response = requests.get(url, headers=headers)
|
134 |
+
response.raise_for_status()
|
135 |
|
136 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
|
|
137 |
|
|
|
138 |
metadata = {}
|
139 |
+
for meta in soup.find_all("meta"):
|
140 |
+
if "name" in meta.attrs and "content" in meta.attrs:
|
141 |
+
metadata[meta["name"]] = meta["content"]
|
142 |
+
elif "property" in meta.attrs and "content" in meta.attrs:
|
143 |
+
metadata[meta["property"]] = meta["content"]
|
144 |
|
145 |
return metadata if metadata else {"error": "No se encontraron metadatos en la página."}
|
146 |
|
147 |
except requests.exceptions.RequestException as e:
|
148 |
return {"error": f"Error al acceder a la URL: {str(e)}"}
|
149 |
|
150 |
+
|
151 |
@tool
|
152 |
def get_current_time_in_timezone(timezone: str) -> str:
|
153 |
+
"""Devuelve la hora actual en una zona horaria específica.
|
154 |
+
|
155 |
Args:
|
156 |
+
timezone: Una cadena que representa una zona horaria válida (ej. 'America/New_York').
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
La hora local actual en la zona horaria especificada.
|
160 |
"""
|
161 |
try:
|
|
|
162 |
tz = pytz.timezone(timezone)
|
|
|
163 |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
164 |
+
return f"La hora local actual en {timezone} es: {local_time}"
|
165 |
except Exception as e:
|
166 |
+
return f"Error obteniendo la hora para la zona horaria '{timezone}': {str(e)}"
|
167 |
|
168 |
|
169 |
final_answer = FinalAnswerTool()
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
# Import tool from Hub
|
172 |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
173 |
|
174 |
+
with open("prompts.yaml", "r") as stream:
|
175 |
prompt_templates = yaml.safe_load(stream)
|
176 |
+
|
177 |
agent = CodeAgent(
|
178 |
model=model,
|
179 |
+
tools=[
|
180 |
+
final_answer,
|
181 |
+
extract_metadata_from_url,
|
182 |
+
scrape_webpage,
|
183 |
+
save_scraped_data_as_markdown, # Se añade la nueva herramienta al agente
|
184 |
+
],
|
185 |
max_steps=6,
|
186 |
verbosity_level=1,
|
187 |
grammar=None,
|
188 |
planning_interval=None,
|
189 |
name=None,
|
190 |
description=None,
|
191 |
+
prompt_templates=prompt_templates,
|
192 |
)
|
193 |
|
194 |
+
GradioUI(agent).launch()
|
|