Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,29 +13,16 @@ import tensorflow_hub as hub
|
|
13 |
IMAGE_DIM = 299 # required/default image dimensionality
|
14 |
model = tf.keras.models.load_model("nsfw.299x299.h5", custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
for img_path in image_paths:
|
27 |
-
try:
|
28 |
-
if verbose:
|
29 |
-
print(img_path, "size:", image_size)
|
30 |
-
image = keras.preprocessing.image.load_img(img_path, target_size=image_size)
|
31 |
-
image = keras.preprocessing.image.img_to_array(image)
|
32 |
-
image /= 255
|
33 |
-
loaded_images.append(image)
|
34 |
-
loaded_image_paths.append(img_path)
|
35 |
-
except Exception as ex:
|
36 |
-
print("Image Load Failure: ", img_path, ex)
|
37 |
-
|
38 |
-
return np.asarray(loaded_images), loaded_image_paths
|
39 |
|
40 |
def load_model(model_path):
|
41 |
if model_path is None or not exists(model_path):
|
@@ -46,7 +33,8 @@ def load_model(model_path):
|
|
46 |
|
47 |
|
48 |
def classify_nd(model, nd_images, predict_args={}):
|
49 |
-
|
|
|
50 |
categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
|
51 |
|
52 |
probs = []
|
|
|
13 |
IMAGE_DIM = 299 # required/default image dimensionality
|
14 |
model = tf.keras.models.load_model("nsfw.299x299.h5", custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
|
15 |
|
16 |
+
def load_image(image, image_size):
|
17 |
+
try:
|
18 |
+
image = keras.preprocessing.image.array_to_img(image)
|
19 |
+
image = image.resize((image_size, image_size))
|
20 |
+
image = keras.preprocessing.image.img_to_array(image)
|
21 |
+
image /= 255
|
22 |
+
return np.asarray(image)
|
23 |
+
except Exception as ex:
|
24 |
+
print("Image Load Failure: ", ex)
|
25 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def load_model(model_path):
|
28 |
if model_path is None or not exists(model_path):
|
|
|
33 |
|
34 |
|
35 |
def classify_nd(model, nd_images, predict_args={}):
|
36 |
+
img = load_image(nd_images,(299, 299))
|
37 |
+
model_preds = model.predict(img, **predict_args)
|
38 |
categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
|
39 |
|
40 |
probs = []
|