zxcgqq commited on
Commit
03cc196
·
1 Parent(s): d11611b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -24
app.py CHANGED
@@ -13,29 +13,16 @@ import tensorflow_hub as hub
13
  IMAGE_DIM = 299 # required/default image dimensionality
14
  model = tf.keras.models.load_model("nsfw.299x299.h5", custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
15
 
16
- def load_images(image_paths, image_size, verbose=True):
17
- loaded_images = []
18
- loaded_image_paths = []
19
-
20
- if isdir(image_paths):
21
- parent = abspath(image_paths)
22
- image_paths = [join(parent, f) for f in listdir(image_paths) if isfile(join(parent, f))]
23
- elif isfile(image_paths):
24
- image_paths = [image_paths]
25
-
26
- for img_path in image_paths:
27
- try:
28
- if verbose:
29
- print(img_path, "size:", image_size)
30
- image = keras.preprocessing.image.load_img(img_path, target_size=image_size)
31
- image = keras.preprocessing.image.img_to_array(image)
32
- image /= 255
33
- loaded_images.append(image)
34
- loaded_image_paths.append(img_path)
35
- except Exception as ex:
36
- print("Image Load Failure: ", img_path, ex)
37
-
38
- return np.asarray(loaded_images), loaded_image_paths
39
 
40
  def load_model(model_path):
41
  if model_path is None or not exists(model_path):
@@ -46,7 +33,8 @@ def load_model(model_path):
46
 
47
 
48
  def classify_nd(model, nd_images, predict_args={}):
49
- model_preds = model.predict(nd_images, **predict_args)
 
50
  categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
51
 
52
  probs = []
 
13
  IMAGE_DIM = 299 # required/default image dimensionality
14
  model = tf.keras.models.load_model("nsfw.299x299.h5", custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
15
 
16
+ def load_image(image, image_size):
17
+ try:
18
+ image = keras.preprocessing.image.array_to_img(image)
19
+ image = image.resize((image_size, image_size))
20
+ image = keras.preprocessing.image.img_to_array(image)
21
+ image /= 255
22
+ return np.asarray(image)
23
+ except Exception as ex:
24
+ print("Image Load Failure: ", ex)
25
+ return None
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  def load_model(model_path):
28
  if model_path is None or not exists(model_path):
 
33
 
34
 
35
  def classify_nd(model, nd_images, predict_args={}):
36
+ img = load_image(nd_images,(299, 299))
37
+ model_preds = model.predict(img, **predict_args)
38
  categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
39
 
40
  probs = []