File size: 5,095 Bytes
414b431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import os, sys, time
import torch
import random
import string
import yaml
import utils.util as util
import time

from utils.util import EasyDict as edict

# torch.backends.cudnn.enabled = False
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.deterministic = True

def parse_arguments(args):
    # parse from command line (syntax: --key1.key2.key3=value)
    opt_cmd = {}
    for arg in args:
        assert(arg.startswith("--"))
        if "=" not in arg[2:]: # --key means key=True, --key! means key=False
            key_str, value = (arg[2:-1], "false") if arg[-1]=="!" else (arg[2:], "true")
        else:
            key_str, value = arg[2:].split("=")
        keys_sub = key_str.split(".")
        opt_sub = opt_cmd
        for k in keys_sub[:-1]:
            if k not in opt_sub: opt_sub[k] = {}
            opt_sub = opt_sub[k]
        # if opt_cmd['key1']['key2']['key3'] already exist for key1.key2.key3, print key3 as error msg 
        assert keys_sub[-1] not in opt_sub, keys_sub[-1]
        opt_sub[keys_sub[-1]] = yaml.safe_load(value)
    opt_cmd = edict(opt_cmd)
    return opt_cmd

def set(opt_cmd={}, verbose=True, safe_check=True):
    print("setting configurations...")
    fname = opt_cmd.yaml # load from yaml file
    opt_base = load_options(fname)
    # override with command line arguments
    opt = override_options(opt_base, opt_cmd, key_stack=[], safe_check=safe_check)
    process_options(opt)
    if verbose:
        def print_options(opt, level=0):
            for key, value in sorted(opt.items()):
                if isinstance(value, (dict, edict)):
                    print("   "*level+"* "+key+":")
                    print_options(value, level+1)
                else:
                    print("   "*level+"* "+key+":", value)
        print_options(opt)
    return opt

def load_options(fname):
    with open(fname) as file:
        opt = edict(yaml.safe_load(file))
    if "_parent_" in opt:
        # load parent yaml file(s) as base options
        parent_fnames = opt.pop("_parent_")
        if type(parent_fnames) is str:
            parent_fnames = [parent_fnames]
        for parent_fname in parent_fnames:
            opt_parent = load_options(parent_fname)
            opt_parent = override_options(opt_parent, opt, key_stack=[])
            opt = opt_parent
    print("loading {}...".format(fname))
    return opt

def override_options(opt, opt_over, key_stack=None, safe_check=False):
    for key, value in opt_over.items():
        if isinstance(value, dict):
            # parse child options (until leaf nodes are reached)
            opt[key] = override_options(opt.get(key, dict()), value, key_stack=key_stack+[key], safe_check=safe_check)
        else:
            # ensure command line argument to override is also in yaml file
            if safe_check and key not in opt:
                add_new = None
                while add_new not in ["y", "n"]:
                    key_str = ".".join(key_stack+[key])
                    add_new = input("\"{}\" not found in original opt, add? (y/n) ".format(key_str))
                if add_new=="n":
                    print("safe exiting...")
                    exit()
            opt[key] = value
    return opt

def process_options(opt):
    # set seed
    if opt.seed is not None:
        random.seed(opt.seed)
        np.random.seed(opt.seed)
        torch.manual_seed(opt.seed)
        torch.cuda.manual_seed_all(opt.seed)
    else:
        # create random string as run ID
        randkey = "".join(random.choice(string.ascii_uppercase) for _ in range(4))
        opt.name += "_{}".format(randkey)
    # other default options
    opt.output_path = "{0}/{1}/{2}".format(opt.output_root, opt.group, opt.name)
    os.makedirs(opt.output_path, exist_ok=True)
    opt.H, opt.W = opt.image_size
    if opt.freq.eval is None:
        opt.freq.eval = max(opt.max_epoch // 20, 1) 
    if 'loss_weight' in opt:
        opt.get_depth = False
        opt.get_normal = False

def save_options_file(opt):
    opt_fname = "{}/options.yaml".format(opt.output_path)
    if os.path.isfile(opt_fname):
        with open(opt_fname) as file:
            opt_old = yaml.safe_load(file)
        if opt!=opt_old:
            # prompt if options are not identical
            opt_new_fname = "{}/options_temp.yaml".format(opt.output_path)
            with open(opt_new_fname, "w") as file:
                yaml.safe_dump(util.to_dict(opt), file, default_flow_style=False, indent=4)
            print("existing options file found (different from current one)...")
            os.system("diff {} {}".format(opt_fname, opt_new_fname))
            os.system("rm {}".format(opt_new_fname))
            if not opt.debug:
                print("please cancel within 10 seconds if you do not want to override...")
                time.sleep(10)
        else: print("existing options file found (identical)")
    else: print("(creating new options file...)")
    with open(opt_fname, "w") as file:
        yaml.safe_dump(util.to_dict(opt), file, default_flow_style=False, indent=4)