ZeroShape / model /compute_graph /graph_shape.py
zxhuang1698's picture
initial commit
414b431
import torch
import torch.nn as nn
from utils.util import EasyDict as edict
from utils.loss import Loss
from model.shape.implicit import Implicit
from model.shape.seen_coord_enc import CoordEncAtt, CoordEncRes
from model.shape.rgb_enc import RGBEncAtt, RGBEncRes
from model.depth.dpt_depth import DPTDepthModel
from utils.util import toggle_grad, interpolate_coordmap, get_child_state_dict
from utils.camera import unproj_depth, valid_norm_fac
from utils.layers import Bottleneck_Conv
class Graph(nn.Module):
def __init__(self, opt):
super().__init__()
# define the intrinsics head
self.intr_feat_channels = 768
self.intr_head = nn.Sequential(
Bottleneck_Conv(self.intr_feat_channels, kernel_size=3),
Bottleneck_Conv(self.intr_feat_channels, kernel_size=3),
)
self.intr_pool = nn.AdaptiveAvgPool2d((1, 1))
self.intr_proj = nn.Linear(self.intr_feat_channels, 3)
# init the last linear layer so it outputs zeros
nn.init.zeros_(self.intr_proj.weight)
nn.init.zeros_(self.intr_proj.bias)
# define the depth pred model based on omnidata
self.dpt_depth = DPTDepthModel(backbone='vitb_rn50_384')
# load the pretrained depth model
# when intrinsics need to be predicted we need to load that part as well
self.load_pretrained_depth(opt)
if opt.optim.fix_dpt:
toggle_grad(self.dpt_depth, False)
toggle_grad(self.intr_head, False)
toggle_grad(self.intr_proj, False)
# encoder that encode seen surface to impl conditioning vec
if opt.arch.depth.encoder == 'resnet':
opt.arch.depth.dsp = 1
self.coord_encoder = CoordEncRes(opt)
else:
self.coord_encoder = CoordEncAtt(embed_dim=opt.arch.latent_dim, n_blocks=opt.arch.depth.n_blocks,
num_heads=opt.arch.num_heads, win_size=opt.arch.win_size//opt.arch.depth.dsp)
# rgb branch (not used in final model, keep here for extension)
if opt.arch.rgb.encoder == 'resnet':
self.rgb_encoder = RGBEncRes(opt)
elif opt.arch.rgb.encoder == 'transformer':
self.rgb_encoder = RGBEncAtt(img_size=opt.H, embed_dim=opt.arch.latent_dim, n_blocks=opt.arch.rgb.n_blocks,
num_heads=opt.arch.num_heads, win_size=opt.arch.win_size)
else:
self.rgb_encoder = None
# implicit function
feat_res = opt.H // opt.arch.win_size
self.impl_network = Implicit(feat_res**2, latent_dim=opt.arch.latent_dim*2 if self.rgb_encoder else opt.arch.latent_dim,
semantic=self.rgb_encoder is not None, n_channels=opt.arch.impl.n_channels,
n_blocks_attn=opt.arch.impl.att_blocks, n_layers_mlp=opt.arch.impl.mlp_layers,
num_heads=opt.arch.num_heads, posenc_3D=opt.arch.impl.posenc_3D,
mlp_ratio=opt.arch.impl.mlp_ratio, skip_in=opt.arch.impl.skip_in,
pos_perlayer=opt.arch.impl.posenc_perlayer)
# loss functions
self.loss_fns = Loss(opt)
def load_pretrained_depth(self, opt):
if opt.pretrain.depth:
# loading from our pretrained depth and intr model
if opt.device == 0:
print("loading dpt depth from {}...".format(opt.pretrain.depth))
checkpoint = torch.load(opt.pretrain.depth, map_location="cuda:{}".format(opt.device))
self.dpt_depth.load_state_dict(get_child_state_dict(checkpoint["graph"], "dpt_depth"))
# load the intr head
if opt.device == 0:
print("loading pretrained intr from {}...".format(opt.pretrain.depth))
self.intr_head.load_state_dict(get_child_state_dict(checkpoint["graph"], "intr_head"))
self.intr_proj.load_state_dict(get_child_state_dict(checkpoint["graph"], "intr_proj"))
elif opt.arch.depth.pretrained:
# loading from omnidata weights
if opt.device == 0:
print("loading dpt depth from {}...".format(opt.arch.depth.pretrained))
checkpoint = torch.load(opt.arch.depth.pretrained, map_location="cuda:{}".format(opt.device))
state_dict = checkpoint['model_state_dict']
self.dpt_depth.load_state_dict(state_dict)
def intr_param2mtx(self, opt, intr_params):
'''
Parameters:
opt: config
intr_params: [B, 3], [scale_f, delta_cx, delta_cy]
Return:
intr: [B, 3, 3]
'''
batch_size = len(intr_params)
f = 1.3875
intr = torch.zeros(3, 3).float().to(intr_params.device).unsqueeze(0).repeat(batch_size, 1, 1)
intr[:, 2, 2] += 1
# scale the focal length
# range: [-1, 1], symmetric
scale_f = torch.tanh(intr_params[:, 0])
# range: [1/4, 4], symmetric
scale_f = torch.pow(4. , scale_f)
intr[:, 0, 0] += f * opt.W * scale_f
intr[:, 1, 1] += f * opt.H * scale_f
# shift the optic center, (at most to the image border)
shift_cx = torch.tanh(intr_params[:, 1]) * opt.W / 2
shift_cy = torch.tanh(intr_params[:, 2]) * opt.H / 2
intr[:, 0, 2] += opt.W / 2 + shift_cx
intr[:, 1, 2] += opt.H / 2 + shift_cy
return intr
def forward(self, opt, var, training=False, get_loss=True):
batch_size = len(var.idx)
# encode the rgb, [B, 3, H, W] -> [B, 1+H/(ws)*W/(ws), C], not used in our final model
var.latent_semantic = self.rgb_encoder(var.rgb_input_map) if self.rgb_encoder else None
# predict the depth map and intrinsics
var.depth_pred, intr_feat = self.dpt_depth(var.rgb_input_map, get_feat=True)
depth_map = var.depth_pred
# predict the intrinsics
intr_feat = self.intr_head(intr_feat)
intr_feat = self.intr_pool(intr_feat).squeeze(-1).squeeze(-1)
intr_params = self.intr_proj(intr_feat)
# [B, 3, 3]
var.intr_pred = self.intr_param2mtx(opt, intr_params)
intr_forward = var.intr_pred
# record the validity mask, [B, H*W]
var.validity_mask = (var.mask_input_map>0.5).float().view(batch_size, -1)
# project the depth to 3D points in view-centric frame
# [B, H*W, 3], in camera coordinates
seen_points_3D_pred = unproj_depth(opt, depth_map, intr_forward)
# [B, H*W, 3], [B, 1, H, W] (boolean) -> [B, 3], [B]
seen_points_mean_pred, seen_points_scale_pred = valid_norm_fac(seen_points_3D_pred, var.mask_input_map > 0.5)
# normalize the seen surface, [B, H*W, 3]
var.seen_points = (seen_points_3D_pred - seen_points_mean_pred.unsqueeze(1)) / seen_points_scale_pred.unsqueeze(-1).unsqueeze(-1)
var.seen_points[(var.mask_input_map<=0.5).view(batch_size, -1)] = 0
# [B, 3, H, W]
seen_3D_map = var.seen_points.view(batch_size, opt.H, opt.W, 3).permute(0, 3, 1, 2).contiguous()
seen_3D_dsp, mask_dsp = interpolate_coordmap(seen_3D_map, var.mask_input_map, (opt.H//opt.arch.depth.dsp, opt.W//opt.arch.depth.dsp))
# encode the depth, [B, 1, H/k, W/k] -> [B, 1+H/(ws)*W/(ws), C]
if opt.arch.depth.encoder == 'resnet':
var.latent_depth = self.coord_encoder(seen_3D_dsp, mask_dsp)
else:
var.latent_depth = self.coord_encoder(seen_3D_dsp.permute(0, 2, 3, 1).contiguous(), mask_dsp.squeeze(1)>0.5)
var.pose = var.pose_gt
# forward for loss calculation (only during training)
if 'gt_sample_points' in var and 'gt_sample_sdf' in var:
with torch.no_grad():
# get the normalizing fac based on the GT seen surface
# project the GT depth to 3D points in view-centric frame
# [B, H*W, 3], in camera coordinates
seen_points_3D_gt = unproj_depth(opt, var.depth_input_map, var.intr)
# [B, H*W, 3], [B, 1, H, W] (boolean) -> [B, 3], [B]
seen_points_mean_gt, seen_points_scale_gt = valid_norm_fac(seen_points_3D_gt, var.mask_input_map > 0.5)
var.seen_points_gt = (seen_points_3D_gt - seen_points_mean_gt.unsqueeze(1)) / seen_points_scale_gt.unsqueeze(-1).unsqueeze(-1)
var.seen_points_gt[(var.mask_input_map<=0.5).view(batch_size, -1)] = 0
# transform the GT points accordingly
# [B, 3, 3]
R_gt = var.pose_gt[:, :, :3]
# [B, 3, 1]
T_gt = var.pose_gt[:, :, 3:]
# [B, 3, N]
gt_sample_points_transposed = var.gt_sample_points.permute(0, 2, 1).contiguous()
# camera coordinates, [B, N, 3]
gt_sample_points_cam = (R_gt @ gt_sample_points_transposed + T_gt).permute(0, 2, 1).contiguous()
# normalize with seen std and mean, [B, N, 3]
var.gt_points_cam = (gt_sample_points_cam - seen_points_mean_gt.unsqueeze(1)) / seen_points_scale_gt.unsqueeze(-1).unsqueeze(-1)
# get near-surface points for visualization
# [B, 100, 3]
close_surf_idx = torch.topk(var.gt_sample_sdf.abs(), k=100, dim=1, largest=False)[1].unsqueeze(-1).repeat(1, 1, 3)
# [B, 100, 3]
var.gt_surf_points = torch.gather(var.gt_points_cam, dim=1, index=close_surf_idx)
# [B, N], [B, N, 1+feat_res**2], inference the impl_network for 3D loss
var.pred_sample_occ, attn = self.impl_network(var.latent_depth, var.latent_semantic, var.gt_points_cam)
# calculate the loss if needed
if get_loss:
loss = self.compute_loss(opt, var, training)
return var, loss
return var
def compute_loss(self, opt, var, training=False):
loss = edict()
if opt.loss_weight.depth is not None:
loss.depth = self.loss_fns.depth_loss(var.depth_pred, var.depth_input_map, var.mask_input_map)
if opt.loss_weight.intr is not None and training:
loss.intr = self.loss_fns.intr_loss(var.seen_points, var.seen_points_gt, var.validity_mask)
if opt.loss_weight.shape is not None and training:
loss.shape = self.loss_fns.shape_loss(var.pred_sample_occ, var.gt_sample_sdf)
return loss