Spaces:
Runtime error
Runtime error
File size: 18,176 Bytes
591004d f9cf012 591004d f9cf012 591004d a3b3e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
#!python
# -*- coding: utf-8 -*-
# @author: Kun
import gradio as gr
import random
from sentence_transformers import SentenceTransformer
from human_simulator import Human
from prompts.service_init import get_init_prompt
from utils import get_init, parse_instructions
from global_config import lang_opt, llm_model_opt
if "openai" == llm_model_opt:
from recurrentgpt import RecurrentGPT as AIWriter
llm_model = None
llm_tokenizer = None
elif "vicuna" == llm_model_opt:
from recurrent_llm import RecurrentLLM as AIWriter
from models.vicuna_bin import load_model
llm_tokenizer, llm_model = load_model()
elif "chatglm" == llm_model_opt:
from recurrent_llm import RecurrentLLM as AIWriter
from models.chatglm_hf import load_model
llm_tokenizer, llm_model = load_model()
elif "baichuan" == llm_model_opt:
from recurrent_llm import RecurrentLLM as AIWriter
from models.baichuan_hf import load_model
llm_tokenizer, llm_model = load_model()
elif "aquila" == llm_model_opt:
from recurrent_llm import RecurrentLLM as AIWriter
from models.aquila_fa import load_model
# from models.aquila_hf import load_model
llm_tokenizer, llm_model = load_model()
elif "falcon" == llm_model_opt:
from recurrent_llm import RecurrentLLM
from models.falcon_hf import load_model
llm_tokenizer, llm_model = load_model()
else:
raise Exception("not supported llm model name: {}".format(llm_model_opt))
# from urllib.parse import quote_plus
# from pymongo import MongoClient
# uri = "mongodb://%s:%s@%s" % (quote_plus("xxx"),
# quote_plus("xxx"), "localhost")
# client = MongoClient(uri, maxPoolSize=None)
# db = client.recurrentGPT_db
# log = db.log
_CACHE = {}
# Build the semantic search model
embedder = SentenceTransformer('multi-qa-mpnet-base-cos-v1')
def init_prompt(novel_type, description):
if description == "":
description = ""
else:
description = " about " + description
return get_init_prompt(lang_opt, novel_type, description)
def init(novel_type, description, request: gr.Request):
if novel_type == "":
novel_type = "Science Fiction" if "en" == lang_opt else "科幻故事"
global _CACHE
cookie = request.headers['cookie']
cookie = cookie.split('; _gat_gtag')[0]
# prepare first init
init_paragraphs = get_init(text=init_prompt(
novel_type, description), model=llm_model, tokenizer=llm_tokenizer)
# print(init_paragraphs)
start_input_to_human = {
'output_paragraph': init_paragraphs['Paragraph 3'],
'input_paragraph': '\n\n'.join([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2'], init_paragraphs['Paragraph 3']]),
'output_memory': init_paragraphs['Summary'],
"output_instruction": [init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']]
}
_CACHE[cookie] = {"start_input_to_human": start_input_to_human,
"init_paragraphs": init_paragraphs}
written_paras = f"""Title: {init_paragraphs['name']}
Outline: {init_paragraphs['Outline']}
Paragraphs:
{start_input_to_human['input_paragraph']}""" if "en" == lang_opt else f"""标题: {init_paragraphs['name']}
梗概: {init_paragraphs['Outline']}
段落:
{start_input_to_human['input_paragraph']}"""
long_memory = parse_instructions(
[init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2'], init_paragraphs['Paragraph 3']])
# short memory, long memory, current written paragraphs, 3 next instructions
return start_input_to_human['output_memory'], long_memory, written_paras, init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']
def step(short_memory, long_memory, instruction1, instruction2, instruction3, current_paras, request: gr.Request, ):
if current_paras == "":
return "", "", "", "", "", ""
global _CACHE
# print(list(_CACHE.keys()))
# print(request.headers.get('cookie'))
cookie = request.headers['cookie']
cookie = cookie.split('; _gat_gtag')[0]
cache = _CACHE[cookie]
if "writer" not in cache:
start_input_to_human = cache["start_input_to_human"]
start_input_to_human['output_instruction'] = [
instruction1, instruction2, instruction3]
init_paragraphs = cache["init_paragraphs"]
human = Human(input=start_input_to_human,
memory=None, embedder=embedder, model=llm_model, tokenizer=llm_tokenizer)
human.step()
start_short_memory = init_paragraphs['Summary']
writer_start_input = human.output
# Init writerGPT
writer = AIWriter(input=writer_start_input, short_memory=start_short_memory, long_memory=[
init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2'], init_paragraphs['Paragraph 3']], memory_index=None, embedder=embedder,
model=llm_model, tokenizer=llm_tokenizer)
cache["writer"] = writer
cache["human"] = human
writer.step()
else:
human = cache["human"]
writer = cache["writer"]
output = writer.output
output['output_memory'] = short_memory
# randomly select one instruction out of three
instruction_index = random.randint(0, 2)
output['output_instruction'] = [instruction1,
instruction2, instruction3][instruction_index]
human.input = output
human.step()
writer.input = human.output
writer.step()
long_memory = [[v] for v in writer.long_memory]
# short memory, long memory, current written paragraphs, 3 next instructions
return writer.output['output_memory'], long_memory, current_paras + '\n\n' + writer.output['input_paragraph'], human.output['output_instruction'], *writer.output['output_instruction']
def controled_step(short_memory, long_memory, selected_instruction, current_paras, request: gr.Request, ):
if current_paras == "":
return "", "", "", "", "", ""
global _CACHE
# print(list(_CACHE.keys()))
# print(request.headers.get('cookie'))
cookie = request.headers['cookie']
cookie = cookie.split('; _gat_gtag')[0]
cache = _CACHE[cookie]
if "writer" not in cache:
start_input_to_human = cache["start_input_to_human"]
start_input_to_human['output_instruction'] = selected_instruction
init_paragraphs = cache["init_paragraphs"]
human = Human(input=start_input_to_human,
memory=None, embedder=embedder, model=llm_model, tokenizer=llm_tokenizer)
human.step()
start_short_memory = init_paragraphs['Summary']
writer_start_input = human.output
# Init writerGPT
writer = AIWriter(input=writer_start_input, short_memory=start_short_memory, long_memory=[
init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2'], init_paragraphs['Paragraph 3']], memory_index=None, embedder=embedder,
model=llm_model, tokenizer=llm_tokenizer)
cache["writer"] = writer
cache["human"] = human
writer.step()
else:
human = cache["human"]
writer = cache["writer"]
output = writer.output
output['output_memory'] = short_memory
output['output_instruction'] = selected_instruction
human.input = output
human.step()
writer.input = human.output
writer.step()
# short memory, long memory, current written paragraphs, 3 next instructions
return writer.output['output_memory'], parse_instructions(writer.long_memory), current_paras + '\n\n' + writer.output['input_paragraph'], *writer.output['output_instruction']
# SelectData is a subclass of EventData
def on_select(instruction1, instruction2, instruction3, evt: gr.SelectData):
selected_plan = int(evt.value.replace("Instruction ", "")
) if "en" == lang_opt else int(evt.value.replace("指令 ", ""))
selected_plan = [instruction1, instruction2, instruction3][selected_plan-1]
return selected_plan
def reload_model(choice):
pass
with gr.Blocks(title="小说GPT", css="footer {visibility: hidden}", theme="default") as demo:
if "en" == lang_opt:
gr.Markdown(
"""
# Recurrent-LLM
Interactive Generation of (Arbitrarily) Long Texts with Human-in-the-Loop
""")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown(
"""
# Recurrent-LLM
可以根据题目和简介自动续写文章
也可以手动选择剧情走向进行续写
""")
with gr.Tab("Auto-Generation"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column(scale=1, min_width=200):
novel_type = gr.Textbox(
label="Novel Type", placeholder="e.g. science fiction") if "en" == lang_opt else gr.Textbox(
label="请输入文本", placeholder="可以自己填写或者从EXamples中选择一个填入")
with gr.Column(scale=2, min_width=400):
description = gr.Textbox(
label="Description") if "en" == lang_opt else gr.Textbox(label="剧情简介(非必选项)")
btn_init = gr.Button(
"Init Novel Generation", variant="primary") if "en" == lang_opt else gr.Button(
"点击开始运行", variant="primary")
if "en" == lang_opt:
gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
"Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
elif lang_opt in ["zh1", "zh2"]:
gr.Examples(["科幻故事", "青春伤痛文学", "爱到死去活来", "搞笑",
"幽默", "鬼故事", "喜剧", "童话", "魔法世界", ], inputs=[novel_type])
written_paras = gr.Textbox(
label="Written Paragraphs (editable)", max_lines=21, lines=21) if "en" == lang_opt else gr.Textbox(
label="文章内容", max_lines=21, lines=21)
with gr.Column():
if "en" == lang_opt:
gr.Markdown("### Memory Module\n")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown("### 剧情模型\n")
short_memory = gr.Textbox(
label="Short-Term Memory (editable)", max_lines=3, lines=3) if "en" == lang_opt else gr.Textbox(
label="短期记忆 (可编辑)", max_lines=3, lines=3)
long_memory = gr.Textbox(
label="Long-Term Memory (editable)", max_lines=6, lines=6) if "en" == lang_opt else gr.Textbox(
label="长期记忆 (可编辑)", max_lines=6, lines=6)
if "en" == lang_opt:
gr.Markdown("### Instruction Module\n")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown("### 选项模型\n")
with gr.Row():
instruction1 = gr.Textbox(
label="Instruction 1 (editable)", max_lines=4, lines=4) if "en" == lang_opt else gr.Textbox(
label="指令1(可编辑)", max_lines=4, lines=4)
instruction2 = gr.Textbox(
label="Instruction 2 (editable)", max_lines=4, lines=4) if "en" == lang_opt else gr.Textbox(
label="指令2(可编辑)", max_lines=4, lines=4)
instruction3 = gr.Textbox(
label="Instruction 3 (editable)", max_lines=4, lines=4) if "en" == lang_opt else gr.Textbox(
label="指令3(可编辑)", max_lines=4, lines=4)
selected_plan = gr.Textbox(
label="Revised Instruction (from last step)", max_lines=2, lines=2) if "en" == lang_opt else gr.Textbox(
label="选项说明 (来自上一步)", max_lines=2, lines=2)
btn_step = gr.Button("Next Step", variant="primary") if "en" == lang_opt else gr.Button(
"下一步", variant="primary")
btn_init.click(init, inputs=[novel_type, description], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
btn_step.click(step, inputs=[short_memory, long_memory, instruction1, instruction2, instruction3, written_paras], outputs=[
short_memory, long_memory, written_paras, selected_plan, instruction1, instruction2, instruction3])
with gr.Tab("Human-in-the-Loop"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column(scale=1, min_width=200):
novel_type = gr.Textbox(
label="Novel Type", placeholder="e.g. science fiction") if "en" == lang_opt else gr.Textbox(
label="请输入文本", placeholder="可以自己填写或者从EXamples中选择一个填入")
with gr.Column(scale=2, min_width=400):
description = gr.Textbox(
label="Description") if "en" == lang_opt else gr.Textbox(label="剧情简介(非必选项)")
btn_init = gr.Button(
"Init Novel Generation", variant="primary") if "en" == lang_opt else gr.Button(
"点击开始运行", variant="primary")
if "en" == lang_opt:
gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
"Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
elif lang_opt in ["zh1", "zh2"]:
gr.Examples(["科幻小说", "爱情小说", "推理小说", "奇幻小说",
"玄幻小说", "恐怖", "悬疑", "惊悚", "武侠小说", ], inputs=[novel_type])
written_paras = gr.Textbox(
label="Written Paragraphs (editable)", max_lines=23, lines=23) if "en" == lang_opt else gr.Textbox(
label="文章内容 (可编辑)", max_lines=23, lines=23)
with gr.Column():
if "en" == lang_opt:
gr.Markdown("### Memory Module\n")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown("### 剧情模型\n")
short_memory = gr.Textbox(
label="Short-Term Memory (editable)", max_lines=3, lines=3) if "en" == lang_opt else gr.Textbox(
label="短期记忆 (可编辑)", max_lines=3, lines=3)
long_memory = gr.Textbox(
label="Long-Term Memory (editable)", max_lines=6, lines=6) if "en" == lang_opt else gr.Textbox(
label="长期记忆 (可编辑)", max_lines=6, lines=6)
if "en" == lang_opt:
gr.Markdown("### Instruction Module\n")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown("### 选项模型\n")
with gr.Row():
instruction1 = gr.Textbox(
label="Instruction 1", max_lines=3, lines=3, interactive=False) if "en" == lang_opt else gr.Textbox(
label="指令1", max_lines=3, lines=3, interactive=False)
instruction2 = gr.Textbox(
label="Instruction 2", max_lines=3, lines=3, interactive=False) if "en" == lang_opt else gr.Textbox(
label="指令2", max_lines=3, lines=3, interactive=False)
instruction3 = gr.Textbox(
label="Instruction 3", max_lines=3, lines=3, interactive=False) if "en" == lang_opt else gr.Textbox(
label="指令3", max_lines=3, lines=3, interactive=False)
with gr.Row():
with gr.Column(scale=1, min_width=100):
selected_plan = gr.Radio(
["Instruction 1", "Instruction 2", "Instruction 3"], label="Instruction Selection",) if "en" == lang_opt else gr.Radio(["指令 1", "指令 2", "指令 3"], label="指令 选择",)
with gr.Column(scale=3, min_width=300):
selected_instruction = gr.Textbox(
label="Selected Instruction (editable)", max_lines=5, lines=5) if "en" == lang_opt else gr.Textbox(
label="在上一步骤中被选择的 (可编辑)", max_lines=5, lines=5)
btn_step = gr.Button("Next Step", variant="primary") if "en" == lang_opt else gr.Button(
"下一步", variant="primary")
btn_init.click(init, inputs=[novel_type, description], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
btn_step.click(controled_step, inputs=[short_memory, long_memory, selected_instruction, written_paras], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
selected_plan.select(on_select, inputs=[
instruction1, instruction2, instruction3], outputs=[selected_instruction])
with gr.Tab("Model-Config"):
model_opt_radio = gr.Radio(["OpenAI", "ChatGLM-6B", "Vicuna-7B"], value="OpenAI", label="model",
info="select language you preferred. Default is English.",
interactive=True
)
reload_button = gr.Button("Reload/重新加载")
reload_button.click(reload_model, show_progress=True,
inputs=[model_opt_radio],
outputs=[novel_type])
if __name__ == "__main__":
demo.queue().launch(show_error=True, show_api=False)
|