File size: 7,429 Bytes
591004d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!python
# -*- coding: utf-8 -*-
# @author: Kun

import re
from global_config import lang_opt, llm_model_opt

if "openai" == llm_model_opt:
    from utils.openai_util import get_api_response
elif "vicuna" == llm_model_opt:
    from utils.vicuna_util import get_api_response
elif "chatglm" == llm_model_opt:
    from utils.chatglm_util import get_api_response
elif "baichuan" == llm_model_opt:
    from utils.baichuan_util import get_api_response
elif "aquila" == llm_model_opt:
    from utils.aquila_util import get_api_response
elif "falcon" == llm_model_opt:
    from utils.falcon_util import get_api_response
else:
    raise Exception("not supported llm model name: {}".format(llm_model_opt))


def get_content_between_a_b(a, b, text):
    if "en" == lang_opt:
        if "vicuna" == llm_model_opt:
            return re.search(f"{a}(.*?)\n(.*?){b}", text, re.DOTALL).group(1).strip()
        elif "openai" == llm_model_opt:
            return re.search(f"{a}(.*?)\n{b}", text, re.DOTALL).group(1).strip()
        elif llm_model_opt in ["chatglm", "baichuan", "aquila", "falcon"]:
            return re.search(f"{a}(.*?)\n(.*?){b}", text, re.DOTALL).group(1).strip()
        else:
            raise Exception(
                "not supported llm model name: {}".format(llm_model_opt))

    elif lang_opt in ["zh1", "zh2"]:
        if "vicuna" == llm_model_opt:
            match = re.search(f"{a}(.*?)\n(.*?){b}", text, re.DOTALL)
        elif "openai" == llm_model_opt:
            match = re.search(f"{a}(.*?)\n{b}", text, re.DOTALL)
        elif llm_model_opt in ["chatglm", "baichuan", "aquila", "falcon"]:
            match = re.search(f"{a}(.*?)\n(.*?){b}", text, re.DOTALL)
        else:
            raise Exception(
                "not supported llm model name: {}".format(llm_model_opt))

        if match:
            return match.group(1).strip()
        else:
            if "1" in a or "2" in a or "3" in a:
                a = ''.join(a.split(" "))
            if "1" in b or "2" in b or "3" in b:
                b = "".join(b.split(" "))

            if "vicuna" == llm_model_opt:
                match = re.search(f"{a}(.*?)\n(.*?){b}", text, re.DOTALL)
            elif "openai" == llm_model_opt:
                match = re.search(f"{a}(.*?)\n{b}", text, re.DOTALL)
            elif llm_model_opt in ["chatglm", "baichuan", "aquila", "falcon"]:
                match = re.search(f"{a}(.*?)\n(.*?){b}", text, re.DOTALL)
            else:
                raise Exception(
                    "not supported llm model name: {}".format(llm_model_opt))

            if match:
                return match.group(1).strip()
            else:
                # 处理找不到匹配内容的情况
                return "翻译时出现错误请重试"  # 或者返回其他默认值或采取其他的处理方式
    else:
        raise Exception(f"not supported language: {lang_opt}")


def get_init(init_text=None, text=None, response_file=None, model=None, tokenizer=None):
    """
    init_text: if the title, outline, and the first 3 paragraphs are given in a .txt file, directly read
    text: if no .txt file is given, use init prompt to generate
    """
    if not init_text:
        response = get_api_response(model, tokenizer, text)
        print("response: {}".format(response))

        if response_file:
            with open(response_file, 'a', encoding='utf-8') as f:
                f.write(f"Init output here:\n{response}\n\n")
    else:
        with open(init_text, 'r', encoding='utf-8') as f:
            response = f.read()
        f.close()
    paragraphs = {
        "name": "",
        "Outline": "",
        "Paragraph 1": "",
        "Paragraph 2": "",
        "Paragraph 3": "",
        "Summary": "",
        "Instruction 1": "",
        "Instruction 2": "",
        "Instruction 3": ""
    }

    if "en" == lang_opt:
        paragraphs['name'] = get_content_between_a_b(
            'Name:', 'Outline', response)

        paragraphs['Paragraph 1'] = get_content_between_a_b(
            'Paragraph 1:', 'Paragraph 2:', response)
        paragraphs['Paragraph 2'] = get_content_between_a_b(
            'Paragraph 2:', 'Paragraph 3:', response)
        paragraphs['Paragraph 3'] = get_content_between_a_b(
            'Paragraph 3:', 'Summary', response)
        paragraphs['Summary'] = get_content_between_a_b(
            'Summary:', 'Instruction 1', response)
        paragraphs['Instruction 1'] = get_content_between_a_b(
            'Instruction 1:', 'Instruction 2', response)
        paragraphs['Instruction 2'] = get_content_between_a_b(
            'Instruction 2:', 'Instruction 3', response)
        lines = response.splitlines()
        # content of Instruction 3 may be in the same line with I3 or in the next line
        if lines[-1] != '\n' and lines[-1].startswith('Instruction 3'):
            paragraphs['Instruction 3'] = lines[-1][len("Instruction 3:"):]
        elif lines[-1] != '\n':
            paragraphs['Instruction 3'] = lines[-1]
        # Sometimes it gives Chapter outline, sometimes it doesn't
        for line in lines:
            if line.startswith('Chapter'):
                paragraphs['Outline'] = get_content_between_a_b(
                    'Outline:', 'Chapter', response)
                break
        if paragraphs['Outline'] == '':
            paragraphs['Outline'] = get_content_between_a_b(
                'Outline:', 'Paragraph', response)

    elif lang_opt in ["zh1", "zh2"]:
        paragraphs['name'] = get_content_between_a_b('名称:', '概述:', response)

        paragraphs['Paragraph 1'] = get_content_between_a_b(
            '段落 1:', '段落 2:', response)
        paragraphs['Paragraph 2'] = get_content_between_a_b(
            '段落 2:', '段落 3:', response)
        paragraphs['Paragraph 3'] = get_content_between_a_b(
            '段落 3:', '总结:', response)
        paragraphs['Summary'] = get_content_between_a_b(
            '总结:', '指令 1', response)
        paragraphs['Instruction 1'] = get_content_between_a_b(
            '指令 1:', '指令 2:', response)
        paragraphs['Instruction 2'] = get_content_between_a_b(
            '指令 2:', '指令 3:', response)
        lines = response.splitlines()
        # content of Instruction 3 may be in the same line with I3 or in the next line
        if lines[-1] != '\n' and lines[-1].startswith('Instruction 3'):
            paragraphs['Instruction 3'] = lines[-1][len("Instruction 3:"):]
        elif lines[-1] != '\n':
            paragraphs['Instruction 3'] = lines[-1]
        # Sometimes it gives Chapter outline, sometimes it doesn't
        for line in lines:
            if line.startswith('Chapter'):
                paragraphs['Outline'] = get_content_between_a_b(
                    '概述:', 'Chapter', response)
                break
        if paragraphs['Outline'] == '':
            paragraphs['Outline'] = get_content_between_a_b(
                '概述:', '段落', response)

    return paragraphs


def get_chatgpt_response(model, prompt):
    response = ""
    for data in model.ask(prompt):
        response = data["message"]
    model.delete_conversation(model.conversation_id)
    model.reset_chat()
    return response


def parse_instructions(instructions):
    output = ""
    for i in range(len(instructions)):
        output += f"{i+1}. {instructions[i]}\n"
    return output