Spaces:
Runtime error
Runtime error
#!python | |
# -*- coding: utf-8 -*- | |
# @author: Kun | |
import torch | |
from transformers import AutoTokenizer, AutoConfig, AutoModel | |
model_name_or_path = "THUDM/chatglm-6b-int8" | |
max_token: int = 10000 | |
temperature: float = 0.75 | |
top_p = 0.9 | |
use_lora = False | |
def auto_configure_device_map(num_gpus: int, use_lora: bool): | |
# transformer.word_embeddings 占用1层 | |
# transformer.final_layernorm 和 lm_head 占用1层 | |
# transformer.layers 占用 28 层 | |
# 总共30层分配到num_gpus张卡上 | |
num_trans_layers = 28 | |
per_gpu_layers = 30 / num_gpus | |
# bugfix: PEFT加载lora模型出现的层命名不同 | |
# if LLM_LORA_PATH and use_lora: | |
# layer_prefix = 'base_model.model.transformer' | |
# else: | |
layer_prefix = 'transformer' | |
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError | |
# windows下 model.device 会被设置成 transformer.word_embeddings.device | |
# linux下 model.device 会被设置成 lm_head.device | |
# 在调用chat或者stream_chat时,input_ids会被放到model.device上 | |
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError | |
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上 | |
device_map = {f'{layer_prefix}.word_embeddings': 0, | |
f'{layer_prefix}.final_layernorm': 0, 'lm_head': 0, | |
f'base_model.model.lm_head': 0, } | |
used = 2 | |
gpu_target = 0 | |
for i in range(num_trans_layers): | |
if used >= per_gpu_layers: | |
gpu_target += 1 | |
used = 0 | |
assert gpu_target < num_gpus | |
device_map[f'{layer_prefix}.layers.{i}'] = gpu_target | |
used += 1 | |
return device_map | |
def load_model(llm_device="cuda", device_map=None): | |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,trust_remote_code=True) | |
model_config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) | |
model = AutoModel.from_pretrained(model_name_or_path, config=model_config, trust_remote_code=True) | |
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"): | |
# 根据当前设备GPU数量决定是否进行多卡部署 | |
num_gpus = torch.cuda.device_count() | |
if num_gpus < 2 and device_map is None: | |
model = model.half().cuda() | |
else: | |
from accelerate import dispatch_model | |
# model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, | |
# config=model_config, **kwargs) | |
# 可传入device_map自定义每张卡的部署情况 | |
if device_map is None: | |
device_map = auto_configure_device_map(num_gpus, use_lora) | |
model = dispatch_model( | |
model.half(), device_map=device_map) | |
else: | |
model = model.float().to(llm_device) | |
model = model.eval() | |
return tokenizer, model |