Spaces:
Paused
Paused
File size: 6,352 Bytes
ab2ded1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from functools import partial
import pandas as pd
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from agent.component.base import ComponentBase, ComponentParamBase
class GenerateParam(ComponentParamBase):
"""
Define the Generate component parameters.
"""
def __init__(self):
super().__init__()
self.llm_id = ""
self.prompt = ""
self.max_tokens = 0
self.temperature = 0
self.top_p = 0
self.presence_penalty = 0
self.frequency_penalty = 0
self.cite = True
self.parameters = []
def check(self):
self.check_decimal_float(self.temperature, "[Generate] Temperature")
self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
self.check_decimal_float(self.top_p, "[Generate] Top P")
self.check_empty(self.llm_id, "[Generate] LLM")
# self.check_defined_type(self.parameters, "Parameters", ["list"])
def gen_conf(self):
conf = {}
if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens
if self.temperature > 0: conf["temperature"] = self.temperature
if self.top_p > 0: conf["top_p"] = self.top_p
if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty
if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty
return conf
class Generate(ComponentBase):
component_name = "Generate"
def get_dependent_components(self):
cpnts = [para["component_id"] for para in self._param.parameters]
return cpnts
def set_cite(self, retrieval_res, answer):
answer, idx = retrievaler.insert_citations(answer, [ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
[ck["vector"] for _, ck in retrieval_res.iterrows()],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()), tkweight=0.7,
vtweight=0.3)
doc_ids = set([])
recall_docs = []
for i in idx:
did = retrieval_res.loc[int(i), "doc_id"]
if did in doc_ids: continue
doc_ids.add(did)
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
del retrieval_res["vector"]
del retrieval_res["content_ltks"]
reference = {
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
"doc_aggs": recall_docs
}
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
res = {"content": answer, "reference": reference}
return res
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
prompt = self._param.prompt
retrieval_res = self.get_input()
input = (" - " + "\n - ".join(retrieval_res["content"])) if "content" in retrieval_res else ""
for para in self._param.parameters:
cpn = self._canvas.get_component(para["component_id"])["obj"]
_, out = cpn.output(allow_partial=False)
if "content" not in out.columns:
kwargs[para["key"]] = "Nothing"
else:
kwargs[para["key"]] = " - " + "\n - ".join(out["content"])
kwargs["input"] = input
for n, v in kwargs.items():
# prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt)
prompt = re.sub(r"\{%s\}" % n, str(v), prompt)
downstreams = self._canvas.get_component(self._id)["downstream"]
if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
"obj"].component_name.lower() == "answer":
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
if "empty_response" in retrieval_res.columns:
return Generate.be_output(input)
ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size),
self._param.gen_conf())
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
df = self.set_cite(retrieval_res, ans)
return pd.DataFrame(df)
return Generate.be_output(ans)
def stream_output(self, chat_mdl, prompt, retrieval_res):
res = None
if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []}
yield res
self.set_output(res)
return
answer = ""
for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size),
self._param.gen_conf()):
res = {"content": ans, "reference": []}
answer = ans
yield res
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
res = self.set_cite(retrieval_res, answer)
yield res
self.set_output(res)
|