File size: 24,707 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
---
sidebar_position: 1
slug: /api
---

# API reference

RAGFlow offers RESTful APIs for you to integrate its capabilities into third-party applications. 

## Base URL
```
https://demo.ragflow.io/v1/
```

## Authorization

All of RAGFlow's RESTful APIs use API key for authorization, so keep it safe and do not expose it to the front end. 
Put your API key in the request header. 

```buildoutcfg
Authorization: Bearer {API_KEY}
```

:::note
In the current design, the RESTful API key you get from RAGFlow does not expire.
:::

To get your API key:

1. In RAGFlow, click **Chat** tab in the middle top of the page.
2. Hover over the corresponding dialogue **>** **Chat Bot API** to show the chatbot API configuration page.
3. Click **Api Key** **>** **Create new key** to create your API key.
4. Copy and keep your API key safe. 

## Create conversation

This method creates (news) a conversation for a specific user. 

### Request

#### Request URI

| Method   |        Request URI                                          |
|----------|-------------------------------------------------------------|
| GET      | `/api/new_conversation`                                     |

:::note
You are *required* to save the `data.id` value returned in the response data, which is the session ID for all upcoming conversations.
:::

#### Request parameter

| Name     |  Type  | Required |        Description                                          |
|----------|--------|----------|-------------------------------------------------------------|
| `user_id`| string |   Yes    | The unique identifier assigned to each user. `user_id` must be less than 32 characters and cannot be empty. The following character sets are supported: <br />- 26 lowercase English letters (a-z)<br />- 26 uppercase English letters (A-Z)<br />- 10 digits (0-9)<br />- "_", "-", "." |

### Response 

```json
{
    "data": {
        "create_date": "Fri, 12 Apr 2024 17:26:21 GMT",
        "create_time": 1712913981857,
        "dialog_id": "4f0a2e4cb9af11ee9ba20aef05f5e94f",
        "duration": 0.0,
        "id": "b9b2e098f8ae11ee9f45fa163e197198",
        "message": [
            {
                "content": "Hi, I'm your assistant, what can I do for you?",
                "role": "assistant"
            }
        ],
        "reference": [],
        "tokens": 0,
        "update_date": "Fri, 12 Apr 2024 17:26:21 GMT",
        "update_time": 1712913981857,
        "user_id": "<USER_ID_SET_BY_THE_CALLER>"
    },
    "retcode": 0,
    "retmsg": "success"
}
```

## Get conversation history

This method retrieves the history of a specified conversation session. 

### Request

#### Request URI

| Method   |        Request URI                                          |
|----------|-------------------------------------------------------------|
| GET      | `/api/conversation/<id>`                                    |

#### Request parameter

| Name     |  Type  | Required |        Description                                          |
|----------|--------|----------|-------------------------------------------------------------|
| `id`     | string |   Yes    | The unique identifier assigned to a conversation session. `id` must be less than 32 characters and cannot be empty. The following character sets are supported: <br />- 26 lowercase English letters (a-z)<br />- 26 uppercase English letters (A-Z)<br />- 10 digits (0-9)<br />- "_", "-", "." |

### Response 

#### Response parameter

- `message`: All conversations in the specified conversation session.
    - `role`: `"user"` or `"assistant"`.
    - `content`: The text content of user or assistant. The citations are in a format like `##0$$`. The number in the middle, 0 in this case, indicates which part in data.reference.chunks it refers to.
    
- `user_id`: This is set by the caller.
- `reference`: Each reference corresponds to one of the assistant's answers in `data.message`.
    - `chunks`
        - `content_with_weight`: Content of the chunk.
        - `doc_name`: Name of the *hit* document.
        - `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the image.
        - `positions`: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
        - `similarity`: The hybrid similarity.
        - `term_similarity`: The keyword simimlarity.
        - `vector_similarity`: The embedding similarity.
    - `doc_aggs`:
        - `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the document.
        - `doc_name`: Name of the *hit* document.
        - `count`: The number of *hit* chunks in this document.

```json
{
    "data": {
        "create_date": "Mon, 01 Apr 2024 09:28:42 GMT",
        "create_time": 1711934922220,
        "dialog_id": "df4a4916d7bd11eeaa650242ac180006",
        "id": "2cae30fcefc711ee94140242ac180006",
        "message": [
            {
                "content": "Hi! I'm your assistant, what can I do for you?",
                "role": "assistant"
            },
            {
                "content": "What's the vit score for GPT-4?",
                "role": "user"
            },
            {
                "content": "The ViT Score for GPT-4 in the zero-shot scenario is 0.5058, and in the few-shot scenario, it is 0.6480. ##0$$",
                "role": "assistant"
            }
        ],
        "user_id": "<USER_ID_SET_BY_THE_CALLER>",
        "reference": [
            {
                "chunks": [
                    {
                        "chunk_id": "d0bc7892c3ec4aeac071544fd56730a8",
                        "content_ltks": "tabl 1:openagi task-solv perform under differ set for three closed-sourc llm . boldfac denot the highest score under each learn schema . metric gpt-3.5-turbo claude-2 gpt-4 zero few zero few zero few clip score 0.0 0.0 0.0 0.2543 0.0 0.3055 bert score 0.1914 0.3820 0.2111 0.5038 0.2076 0.6307 vit score 0.2437 0.7497 0.4082 0.5416 0.5058 0.6480 overal 0.1450 0.3772 0.2064 0.4332 0.2378 0.5281",
                        "content_with_weight": "<table><caption>Table 1: OpenAGI task-solving performances under different settings for three closed-source LLMs. Boldface denotes the highest score under each learning schema.</caption>\n<tr><th  rowspan=2 >Metrics</th><th  >GPT-3.5-turbo</th><th></th><th  >Claude-2</th><th  >GPT-4</th></tr>\n<tr><th  >Zero</th><th  >Few</th><th  >Zero Few</th><th  >Zero Few</th></tr>\n<tr><td  >CLIP Score</td><td  >0.0</td><td  >0.0</td><td  >0.0 0.2543</td><td  >0.0 0.3055</td></tr>\n<tr><td  >BERT Score</td><td  >0.1914</td><td  >0.3820</td><td  >0.2111 0.5038</td><td  >0.2076 0.6307</td></tr>\n<tr><td  >ViT Score</td><td  >0.2437</td><td  >0.7497</td><td  >0.4082 0.5416</td><td  >0.5058 0.6480</td></tr>\n<tr><td  >Overall</td><td  >0.1450</td><td  >0.3772</td><td  >0.2064 0.4332</td><td  >0.2378 0.5281</td></tr>\n</table>",
                        "doc_id": "c790da40ea8911ee928e0242ac180005",
                        "doc_name": "OpenAGI When LLM Meets Domain Experts.pdf",
                        "img_id": "afab9fdad6e511eebdb20242ac180006-d0bc7892c3ec4aeac071544fd56730a8",
                        "important_kwd": [],
                        "kb_id": "afab9fdad6e511eebdb20242ac180006",
                        "positions": [
                            [
                                9.0,
                                159.9383341471354,
                                472.1773274739583,
                                223.58013916015625,
                                307.86692301432294
                            ]
                        ],
                        "similarity": 0.7310340654129031,
                        "term_similarity": 0.7671974387781668,
                        "vector_similarity": 0.40556370512552886
                    },
                    {
                        "chunk_id": "7e2345d440383b756670e1b0f43a7007",
                        "content_ltks": "5.5 experiment analysi the main experiment result are tabul in tab . 1 and 2 , showcas the result for closed-sourc and open-sourc llm , respect . the overal perform is calcul a the averag of cllp 8 bert and vit score . ",
                        "content_with_weight": "5.5 Experimental Analysis\nThe main experimental results are tabulated in Tab. 1 and 2, showcasing the results for closed-source and open-source LLMs, respectively. The overall performance is calculated as the average of CLlP\n8\nBERT and ViT scores.",
                        "doc_id": "c790da40ea8911ee928e0242ac180005",
                        "doc_name": "OpenAGI When LLM Meets Domain Experts.pdf",
                        "img_id": "afab9fdad6e511eebdb20242ac180006-7e2345d440383b756670e1b0f43a7007",
                        "important_kwd": [],
                        "kb_id": "afab9fdad6e511eebdb20242ac180006",
                        "positions": [
                            [
                                8.0,
                                107.3,
                                508.90000000000003,
                                686.3,
                                697.0
                            ],
                        ],
                        "similarity": 0.6691508616357027,
                        "term_similarity": 0.6999011754270821,
                        "vector_similarity": 0.39239803751328806
                    },
                ],
                "doc_aggs": [
                    {
                        "count": 8,
                        "doc_id": "c790da40ea8911ee928e0242ac180005",
                        "doc_name": "OpenAGI When LLM Meets Domain Experts.pdf"
                    }
                ],
                "total": 8
            },
        ],
        "update_date": "Tue, 02 Apr 2024 09:07:49 GMT",
        "update_time": 1712020069421
    },
    "retcode": 0,
    "retmsg": "success"
}
```
    
## Get answer

This method retrieves from RAGFlow the answer to the user's latest question.

### Request

#### Request URI

| Method   |        Request URI                                          |
|----------|-------------------------------------------------------------|
| POST     | `/api/completion`                                           |

#### Request parameter

|   Name           |  Type  | Required | Description   |
|------------------|--------|----------|---------------|
| `conversation_id`| string | Yes      | The ID of the conversation session. Call ['GET' /new_conversation](#create-conversation) to retrieve the ID.|
| `messages`       |  json  | Yes      | The latest question in a JSON form, such as `[{"role": "user", "content": "How are you doing!"}]`|
| `quote`          |  bool  |  No      | Default: false|
| `stream`         |  bool  |  No      | Default: true |
| `doc_ids`        | string |  No      | Document IDs delimited by comma, like `c790da40ea8911ee928e0242ac180005,23dsf34ree928e0242ac180005`. The retrieved contents will be confined to these documents. |

### Response 

- `answer`: The answer to the user's latest question.
- `reference`: 
    - `chunks`: The retrieved chunks that contribute to the answer.  
        - `content_with_weight`: Content of the chunk.
        - `doc_name`: Name of the *hit* document.
        - `img_id`: The image ID of the chunk. It is an optional field only for PDF, PPTX, and images. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the image.
        - `positions`: [page_number, [upleft corner(x, y)], [right bottom(x, y)]], the chunk position, only for PDF.
        - `similarity`: The hybrid similarity.
        - `term_similarity`: The keyword simimlarity.
        - `vector_similarity`: The embedding similarity.
    - `doc_aggs`:
        - `doc_id`: ID of the *hit* document. Call ['GET' /document/get/\<id\>](#get-document-content) to retrieve the document.
        - `doc_name`: Name of the *hit* document. 
        - `count`: The number of *hit* chunks in this document.

```json
{
    "data": {
      "answer": "The ViT Score for GPT-4 in the zero-shot scenario is 0.5058, and in the few-shot scenario, it is 0.6480. ##0$$",
      "reference": {
        "chunks": [
          {
            "chunk_id": "d0bc7892c3ec4aeac071544fd56730a8",
            "content_ltks": "tabl 1:openagi task-solv perform under differ set for three closed-sourc llm . boldfac denot the highest score under each learn schema . metric gpt-3.5-turbo claude-2 gpt-4 zero few zero few zero few clip score 0.0 0.0 0.0 0.2543 0.0 0.3055 bert score 0.1914 0.3820 0.2111 0.5038 0.2076 0.6307 vit score 0.2437 0.7497 0.4082 0.5416 0.5058 0.6480 overal 0.1450 0.3772 0.2064 0.4332 0.2378 0.5281",
            "content_with_weight": "<table><caption>Table 1: OpenAGI task-solving performances under different settings for three closed-source LLMs. Boldface denotes the highest score under each learning schema.</caption>\n<tr><th  rowspan=2 >Metrics</th><th  >GPT-3.5-turbo</th><th></th><th  >Claude-2</th><th  >GPT-4</th></tr>\n<tr><th  >Zero</th><th  >Few</th><th  >Zero Few</th><th  >Zero Few</th></tr>\n<tr><td  >CLIP Score</td><td  >0.0</td><td  >0.0</td><td  >0.0 0.2543</td><td  >0.0 0.3055</td></tr>\n<tr><td  >BERT Score</td><td  >0.1914</td><td  >0.3820</td><td  >0.2111 0.5038</td><td  >0.2076 0.6307</td></tr>\n<tr><td  >ViT Score</td><td  >0.2437</td><td  >0.7497</td><td  >0.4082 0.5416</td><td  >0.5058 0.6480</td></tr>\n<tr><td  >Overall</td><td  >0.1450</td><td  >0.3772</td><td  >0.2064 0.4332</td><td  >0.2378 0.5281</td></tr>\n</table>",
            "doc_id": "c790da40ea8911ee928e0242ac180005",
            "doc_name": "OpenAGI When LLM Meets Domain Experts.pdf",
            "img_id": "afab9fdad6e511eebdb20242ac180006-d0bc7892c3ec4aeac071544fd56730a8",
            "important_kwd": [],
            "kb_id": "afab9fdad6e511eebdb20242ac180006",
            "positions": [
              [
                9.0,
                159.9383341471354,
                472.1773274739583,
                223.58013916015625,
                307.86692301432294
              ]
            ],
            "similarity": 0.7310340654129031,
            "term_similarity": 0.7671974387781668,
            "vector_similarity": 0.40556370512552886
          },
          {
            "chunk_id": "7e2345d440383b756670e1b0f43a7007",
            "content_ltks": "5.5 experiment analysi the main experiment result are tabul in tab . 1 and 2 , showcas the result for closed-sourc and open-sourc llm , respect . the overal perform is calcul a the averag of cllp 8 bert and vit score . here , onli the task descript of the benchmark task are fed into llm(addit inform , such a the input prompt and llm\u2019output , is provid in fig . a.4 and a.5 in supplementari). broadli speak , closed-sourc llm demonstr superior perform on openagi task , with gpt-4 lead the pack under both zero-and few-shot scenario . in the open-sourc categori , llama-2-13b take the lead , consist post top result across variou learn schema--the perform possibl influenc by it larger model size . notabl , open-sourc llm significantli benefit from the tune method , particularli fine-tun and\u2019rltf . these method mark notic enhanc for flan-t5-larg , vicuna-7b , and llama-2-13b when compar with zero-shot and few-shot learn schema . in fact , each of these open-sourc model hit it pinnacl under the rltf approach . conclus , with rltf tune , the perform of llama-2-13b approach that of gpt-3.5 , illustr it potenti .",
            "content_with_weight": "5.5 Experimental Analysis\nThe main experimental results are tabulated in Tab. 1 and 2, showcasing the results for closed-source and open-source LLMs, respectively. The overall performance is calculated as the average of CLlP\n8\nBERT and ViT scores. Here, only the task descriptions of the benchmark tasks are fed into LLMs (additional information, such as the input prompt and LLMs\u2019 outputs, is provided in Fig. A.4 and A.5 in supplementary). Broadly speaking, closed-source LLMs demonstrate superior performance on OpenAGI tasks, with GPT-4 leading the pack under both zero- and few-shot scenarios. In the open-source category, LLaMA-2-13B takes the lead, consistently posting top results across various learning schema--the performance possibly influenced by its larger model size. Notably, open-source LLMs significantly benefit from the tuning methods, particularly Fine-tuning and\u2019 RLTF. These methods mark noticeable enhancements for Flan-T5-Large, Vicuna-7B, and LLaMA-2-13B when compared with zero-shot and few-shot learning schema. In fact, each of these open-source models hits its pinnacle under the RLTF approach. Conclusively, with RLTF tuning, the performance of LLaMA-2-13B approaches that of GPT-3.5, illustrating its potential.",
            "doc_id": "c790da40ea8911ee928e0242ac180005",
            "doc_name": "OpenAGI When LLM Meets Domain Experts.pdf",
            "img_id": "afab9fdad6e511eebdb20242ac180006-7e2345d440383b756670e1b0f43a7007",
            "important_kwd": [],
            "kb_id": "afab9fdad6e511eebdb20242ac180006",
            "positions": [
              [
                8.0,
                107.3,
                508.90000000000003,
                686.3,
                697.0
              ]
            ],
            "similarity": 0.6691508616357027,
            "term_similarity": 0.6999011754270821,
            "vector_similarity": 0.39239803751328806
          }
        ],
        "doc_aggs": {
          "OpenAGI When LLM Meets Domain Experts.pdf": 4
        },
        "total": 8
      }
    },
    "retcode": 0,
    "retmsg": "success"
}
```  

## Get document content

This method retrieves the content of a document.

### Request

#### Request URI

| Method   |        Request URI                                          |
|----------|-------------------------------------------------------------|
| GET      | `/document/get/<id>`                                        |

### Response

A binary file. 

## Upload file

This method uploads a specific file to a specified knowledge base.

### Request

#### Request URI

| Method   |        Request URI                                          |
|----------|-------------------------------------------------------------|
| POST     | `/api/document/upload`                                      |

#### Response parameter

|   Name      | Type   | Required | Description                                             |
|-------------|--------|----------|---------------------------------------------------------|
| `file`      | file   | Yes      | The file to upload.                                     |
| `kb_name`   | string | Yes      | The name of the knowledge base to upload the file to.   |
| `parser_id` | string |  No      | The parsing method (chunk template) to use. <br />- "naive": General;<br />- "qa": Q&A;<br />- "manual": Manual;<br />- "table": Table;<br />- "paper": Paper;<br />- "laws": Laws;<br />- "presentation": Presentation;<br />- "picture": Picture;<br />- "one": One. |
| `run`       | string |  No      | 1: Automatically start file parsing. If `parser_id` is not set, RAGFlow uses the general template by default. |


### Response 

```json
{
    "data": {
        "chunk_num": 0,
        "create_date": "Thu, 25 Apr 2024 14:30:06 GMT",
        "create_time": 1714026606921,
        "created_by": "553ec818fd5711ee8ea63043d7ed348e",
        "id": "41e9324602cd11ef9f5f3043d7ed348e",
        "kb_id": "06802686c0a311ee85d6246e9694c130",
        "location": "readme.txt",
        "name": "readme.txt",
        "parser_config": {
            "field_map": {
            },
            "pages": [
                [
                    0,
                    1000000
                ]
            ]
        },
        "parser_id": "general",
        "process_begin_at": null,
        "process_duation": 0.0,
        "progress": 0.0,
        "progress_msg": "",
        "run": "0",
        "size": 929,
        "source_type": "local",
        "status": "1",
        "thumbnail": null,
        "token_num": 0,
        "type": "doc",
        "update_date": "Thu, 25 Apr 2024 14:30:06 GMT",
        "update_time": 1714026606921
    },
    "retcode": 0,
    "retmsg": "success"
}
```

## Get document chunks

This method retrieves the chunks of a specific document by `doc_name` or `doc_id`.

### Request

#### Request URI

| Method   |        Request URI                                          |
|----------|-------------------------------------------------------------|
| GET      | `/api/list_chunks`                                          |

#### Request parameter

|   Name     | Type   | Required |                        Description                                                          |
|------------|--------|----------|---------------------------------------------------------------------------------------------|
| `doc_name` | string |  No      | The name of the document in the knowledge base. It must not be empty if `doc_id` is not set.|
| `doc_id`   | string |  No      | The ID of the document in the knowledge base. It must not be empty if `doc_name` is not set.|


### Response

```json
{
    "data": [
        {
            "content": "Figure 14: Per-request neural-net processingof RL-Cache.\n103\n(sn)\nCPU\n 102\nGPU\n8101\n100\n8\n16 64 256 1K\n4K",
            "doc_name": "RL-Cache.pdf",
            "img_id": "0335167613f011ef91240242ac120006-b46c3524952f82dbe061ce9b123f2211"
        },
        {
            "content": "4.3 ProcessingOverheadof RL-CacheACKNOWLEDGMENTSThis section evaluates how effectively our RL-Cache implemen-tation leverages modern multi-core CPUs and GPUs to keep the per-request neural-net processing overhead low. Figure 14 depictsThis researchwas supported inpart by the Regional Government of Madrid (grant P2018/TCS-4499, EdgeData-CM)andU.S. National Science Foundation (grants CNS-1763617 andCNS-1717179).REFERENCES",
            "doc_name": "RL-Cache.pdf",
            "img_id": "0335167613f011ef91240242ac120006-d4c12c43938eb55d2d8278eea0d7e6d7"
        }
    ],
    "retcode": 0,
    "retmsg": "success"
}
```

## Get document list

This method retrieves a list of documents from a specified knowledge base.

### Request

#### Request URI

| Method   |        Request URI                                          |
|----------|-------------------------------------------------------------|
| POST     | `/api/list_kb_docs`                                         |

#### Request parameter

| Name        | Type   | Required |  Description                                                          |
|-------------|--------|----------|-----------------------------------------------------------------------|
| `kb_name`   | string | Yes      | The name of the knowledge base, from which you get the document list. |
| `page`      | int    |  No      | The number of pages, default:1.                                       |
| `page_size` | int    |  No      | The number of docs for each page, default:15.                         |
| `orderby`   | string |  No      | `chunk_num`, `create_time`, or `size`, default:`create_time`          |
| `desc`      | bool   |  No      | Default:True.                                                         |
| `keywords`  | string |  No      | Keyword of the document name.                                         |


### Response 

```json
{
    "data": {
        "docs": [
            {
                "doc_id": "bad89a84168c11ef9ce40242ac120006",
                "doc_name": "test.xlsx"
            },
            {
                "doc_id": "641a9b4013f111efb53f0242ac120006",
                "doc_name": "1111.pdf"
            }
        ],
        "total": 2
    },
    "retcode": 0,
    "retmsg": "success"
}
```

## Delete documents 

This method deletes documents by document ID or name.

### Request

#### Request URI

| Method   |        Request URI                                          |
|----------|-------------------------------------------------------------|
| DELETE   | `/api/document`                                             |

#### Request parameter

| Name        | Type   | Required | Description                |
|-------------|--------|----------|----------------------------|
| `doc_names` | List   |  No      | A list of document names. It must not be empty if `doc_ids` is not set.  |
| `doc_ids`   | List   |  No      | A list of document IDs. It must not be empty if `doc_names` is not set.  |


### Response

```json
{
    "data": true,
    "retcode": 0,
    "retmsg": "success"
}
```