Spaces:
Paused
Paused
File size: 1,508 Bytes
ab2ded1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import io
import re
import numpy as np
from api.db import LLMType
from rag.nlp import rag_tokenizer
from api.db.services.llm_service import LLMBundle
from rag.nlp import tokenize
def chunk(filename, binary, tenant_id, lang, callback=None, **kwargs):
doc = {
"docnm_kwd": filename,
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
}
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
# is it English
eng = lang.lower() == "english" # is_english(sections)
try:
callback(0.1, "USE Sequence2Txt LLM to transcription the audio")
seq2txt_mdl = LLMBundle(tenant_id, LLMType.SPEECH2TEXT, lang=lang)
ans = seq2txt_mdl.transcription(binary)
callback(0.8, "Sequence2Txt LLM respond: %s ..." % ans[:32])
tokenize(doc, ans, eng)
return [doc]
except Exception as e:
callback(prog=-1, msg=str(e))
return []
|