Spaces:
Paused
Paused
File size: 1,300 Bytes
ab2ded1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import re
from graphrag.index import build_knowlege_graph_chunks
from rag.app import naive
from rag.nlp import rag_tokenizer, tokenize_chunks
def chunk(filename, binary, tenant_id, from_page=0, to_page=100000,
lang="Chinese", callback=None, **kwargs):
parser_config = kwargs.get(
"parser_config", {
"chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": False})
eng = lang.lower() == "english"
parser_config["layout_recognize"] = False
sections = naive.chunk(filename, binary, from_page=from_page, to_page=to_page, section_only=True,
parser_config=parser_config, callback=callback)
chunks = build_knowlege_graph_chunks(tenant_id, sections, callback,
parser_config.get("entity_types", ["organization", "person", "location", "event", "time"])
)
for c in chunks: c["docnm_kwd"] = filename
doc = {
"docnm_kwd": filename,
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename)),
"knowledge_graph_kwd": "text"
}
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
chunks.extend(tokenize_chunks(sections, doc, eng))
return chunks |