File size: 7,787 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import copy
from tika import parser
import re
from io import BytesIO
from docx import Document

from api.db import ParserType
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, hierarchical_merge, \
    make_colon_as_title, add_positions, tokenize_chunks, find_codec, docx_question_level
from rag.nlp import rag_tokenizer
from deepdoc.parser import PdfParser, DocxParser, PlainParser, HtmlParser
from rag.settings import cron_logger


class Docx(DocxParser):
    def __init__(self):
        pass

    def __clean(self, line):
        line = re.sub(r"\u3000", " ", line).strip()
        return line

    def old_call(self, filename, binary=None, from_page=0, to_page=100000):
        self.doc = Document(
            filename) if not binary else Document(BytesIO(binary))
        pn = 0
        lines = []
        for p in self.doc.paragraphs:
            if pn > to_page:
                break
            if from_page <= pn < to_page and p.text.strip():
                lines.append(self.__clean(p.text))
            for run in p.runs:
                if 'lastRenderedPageBreak' in run._element.xml:
                    pn += 1
                    continue
                if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
                    pn += 1
        return [l for l in lines if l]

    def __call__(self, filename, binary=None, from_page=0, to_page=100000):
        self.doc = Document(
            filename) if not binary else Document(BytesIO(binary))
        pn = 0
        lines = []
        bull = bullets_category([p.text for p in self.doc.paragraphs])
        for p in self.doc.paragraphs:
            if pn > to_page:
                break
            question_level, p_text = docx_question_level(p, bull)
            if not p_text.strip("\n"):continue
            lines.append((question_level, p_text))

            for run in p.runs:
                if 'lastRenderedPageBreak' in run._element.xml:
                    pn += 1
                    continue
                if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
                    pn += 1

        visit = [False for _ in range(len(lines))]
        sections = []
        for s in range(len(lines)):
            e = s + 1
            while e < len(lines):
                if lines[e][0] <= lines[s][0]:
                    break
                e += 1
            if e - s == 1 and visit[s]: continue
            sec = []
            next_level = lines[s][0] + 1
            while not sec and next_level < 22:
                for i in range(s+1, e):
                    if lines[i][0] != next_level: continue
                    sec.append(lines[i][1])
                    visit[i] = True
                next_level += 1
            sec.insert(0, lines[s][1])

            sections.append("\n".join(sec))
        return [l for l in sections if l]

    def __str__(self) -> str:
        return f'''

            question:{self.question},

            answer:{self.answer},

            level:{self.level},

            childs:{self.childs}

        '''


class Pdf(PdfParser):
    def __init__(self):
        self.model_speciess = ParserType.LAWS.value
        super().__init__()

    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        callback(msg="OCR is running...")
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback
        )
        callback(msg="OCR finished")

        from timeit import default_timer as timer
        start = timer()
        self._layouts_rec(zoomin)
        callback(0.67, "Layout analysis finished")
        cron_logger.info("layouts:".format(
            (timer() - start) / (self.total_page + 0.1)))
        self._naive_vertical_merge()

        callback(0.8, "Text extraction finished")

        return [(b["text"], self._line_tag(b, zoomin))
                for b in self.boxes], None


def chunk(filename, binary=None, from_page=0, to_page=100000,

          lang="Chinese", callback=None, **kwargs):
    """

        Supported file formats are docx, pdf, txt.

    """
    doc = {
        "docnm_kwd": filename,
        "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
    }
    doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
    pdf_parser = None
    sections = []
    # is it English
    eng = lang.lower() == "english"  # is_english(sections)

    if re.search(r"\.docx$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        for txt in Docx()(filename, binary):
            sections.append(txt)
        callback(0.8, "Finish parsing.")
        chunks = sections
        return tokenize_chunks(chunks, doc, eng, pdf_parser)

    elif re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf() if kwargs.get(
            "parser_config", {}).get(
            "layout_recognize", True) else PlainParser()
        for txt, poss in pdf_parser(filename if not binary else binary,
                                    from_page=from_page, to_page=to_page, callback=callback)[0]:
            sections.append(txt + poss)

    elif re.search(r"\.txt$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = ""
        if binary:
            encoding = find_codec(binary)
            txt = binary.decode(encoding, errors="ignore")
        else:
            with open(filename, "r") as f:
                while True:
                    l = f.readline()
                    if not l:
                        break
                    txt += l
        sections = txt.split("\n")
        sections = [l for l in sections if l]
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        sections = HtmlParser()(filename, binary)
        sections = [l for l in sections if l]
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.doc$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        binary = BytesIO(binary)
        doc_parsed = parser.from_buffer(binary)
        sections = doc_parsed['content'].split('\n')
        sections = [l for l in sections if l]
        callback(0.8, "Finish parsing.")

    else:
        raise NotImplementedError(
            "file type not supported yet(doc, docx, pdf, txt supported)")


    # Remove 'Contents' part
    remove_contents_table(sections, eng)

    make_colon_as_title(sections)
    bull = bullets_category(sections)
    chunks = hierarchical_merge(bull, sections, 5)
    if not chunks:
        callback(0.99, "No chunk parsed out.")

    return tokenize_chunks(["\n".join(ck)
                           for ck in chunks], doc, eng, pdf_parser)


if __name__ == "__main__":
    import sys

    def dummy(prog=None, msg=""):
        pass
    chunk(sys.argv[1], callback=dummy)