File size: 10,658 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import copy
import re

from api.db import ParserType
from io import BytesIO
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks, docx_question_level
from deepdoc.parser import PdfParser, PlainParser
from rag.utils import num_tokens_from_string
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
from docx import Document
from PIL import Image

class Pdf(PdfParser):
    def __init__(self):
        self.model_speciess = ParserType.MANUAL.value
        super().__init__()

    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        from timeit import default_timer as timer
        start = timer()
        callback(msg="OCR is running...")
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback
        )
        callback(msg="OCR finished.")
        # for bb in self.boxes:
        #    for b in bb:
        #        print(b)
        print("OCR:", timer() - start)

        self._layouts_rec(zoomin)
        callback(0.65, "Layout analysis finished.")
        print("layouts:", timer() - start)
        self._table_transformer_job(zoomin)
        callback(0.67, "Table analysis finished.")
        self._text_merge()
        tbls = self._extract_table_figure(True, zoomin, True, True)
        self._concat_downward()
        self._filter_forpages()
        callback(0.68, "Text merging finished")

        # clean mess
        for b in self.boxes:
            b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())

        return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
                for i, b in enumerate(self.boxes)], tbls

class Docx(DocxParser):
    def __init__(self):
        pass
    def get_picture(self, document, paragraph):
        img = paragraph._element.xpath('.//pic:pic')
        if not img:
            return None
        img = img[0]
        embed = img.xpath('.//a:blip/@r:embed')[0]
        related_part = document.part.related_parts[embed]
        image = related_part.image
        image = Image.open(BytesIO(image.blob))
        return image
    def concat_img(self, img1, img2):
        if img1 and not img2:
            return img1
        if not img1 and img2:
            return img2
        if not img1 and not img2:
            return None
        width1, height1 = img1.size
        width2, height2 = img2.size

        new_width = max(width1, width2)
        new_height = height1 + height2
        new_image = Image.new('RGB', (new_width, new_height))

        new_image.paste(img1, (0, 0))
        new_image.paste(img2, (0, height1))

        return new_image

    def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
        self.doc = Document(
            filename) if not binary else Document(BytesIO(binary))
        pn = 0
        last_answer, last_image = "", None
        question_stack, level_stack = [], []
        ti_list = []
        for p in self.doc.paragraphs:
            if pn > to_page:
                break
            question_level, p_text = 0, ''
            if from_page <= pn < to_page and p.text.strip():
                question_level, p_text = docx_question_level(p)
            if not question_level or question_level > 6: # not a question
                last_answer = f'{last_answer}\n{p_text}'
                current_image = self.get_picture(self.doc, p)
                last_image = self.concat_img(last_image, current_image)
            else:   # is a question
                if last_answer or last_image:
                    sum_question = '\n'.join(question_stack)
                    if sum_question:
                        ti_list.append((f'{sum_question}\n{last_answer}', last_image))
                    last_answer, last_image = '', None

                i = question_level
                while question_stack and i <= level_stack[-1]:
                    question_stack.pop()
                    level_stack.pop()
                question_stack.append(p_text)
                level_stack.append(question_level)
            for run in p.runs:
                if 'lastRenderedPageBreak' in run._element.xml:
                    pn += 1
                    continue
                if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
                    pn += 1
        if last_answer:
            sum_question = '\n'.join(question_stack)
            if sum_question:
                ti_list.append((f'{sum_question}\n{last_answer}', last_image))
                
        tbls = []
        for tb in self.doc.tables:
            html= "<table>"
            for r in tb.rows:
                html += "<tr>"
                i = 0
                while i < len(r.cells):
                    span = 1
                    c = r.cells[i]
                    for j in range(i+1, len(r.cells)):
                        if c.text == r.cells[j].text:
                            span += 1
                            i = j
                    i += 1
                    html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
                html += "</tr>"
            html += "</table>"
            tbls.append(((None, html), ""))
        return ti_list, tbls

def chunk(filename, binary=None, from_page=0, to_page=100000,

          lang="Chinese", callback=None, **kwargs):
    """

        Only pdf is supported.

    """
    pdf_parser = None
    doc = {
        "docnm_kwd": filename
    }
    doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
    doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
    # is it English
    eng = lang.lower() == "english"  # pdf_parser.is_english
    if re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf() if kwargs.get(
            "parser_config", {}).get(
            "layout_recognize", True) else PlainParser()
        sections, tbls = pdf_parser(filename if not binary else binary,
                                    from_page=from_page, to_page=to_page, callback=callback)
        if sections and len(sections[0]) < 3:
            sections = [(t, l, [[0] * 5]) for t, l in sections]
        # set pivot using the most frequent type of title,
        # then merge between 2 pivot
        if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
            max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
            most_level = max(0, max_lvl - 1)
            levels = []
            for txt, _, _ in sections:
                for t, lvl in pdf_parser.outlines:
                    tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
                    tks_ = set([txt[i] + txt[i + 1]
                                for i in range(min(len(t), len(txt) - 1))])
                    if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
                        levels.append(lvl)
                        break
                else:
                    levels.append(max_lvl + 1)

        else:
            bull = bullets_category([txt for txt, _, _ in sections])
            most_level, levels = title_frequency(
                bull, [(txt, l) for txt, l, poss in sections])

        assert len(sections) == len(levels)
        sec_ids = []
        sid = 0
        for i, lvl in enumerate(levels):
            if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
                sid += 1
            sec_ids.append(sid)
            # print(lvl, self.boxes[i]["text"], most_level, sid)

        sections = [(txt, sec_ids[i], poss)
                    for i, (txt, _, poss) in enumerate(sections)]
        for (img, rows), poss in tbls:
            if not rows: continue
            sections.append((rows if isinstance(rows, str) else rows[0], -1,
                            [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))

        def tag(pn, left, right, top, bottom):
            if pn + left + right + top + bottom == 0:
                return ""
            return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
                .format(pn, left, right, top, bottom)

        chunks = []
        last_sid = -2
        tk_cnt = 0
        for txt, sec_id, poss in sorted(sections, key=lambda x: (
                x[-1][0][0], x[-1][0][3], x[-1][0][1])):
            poss = "\t".join([tag(*pos) for pos in poss])
            if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
                if chunks:
                    chunks[-1] += "\n" + txt + poss
                    tk_cnt += num_tokens_from_string(txt)
                    continue
            chunks.append(txt + poss)
            tk_cnt = num_tokens_from_string(txt)
            if sec_id > -1:
                last_sid = sec_id

        res = tokenize_table(tbls, doc, eng)
        res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
        return res
    if re.search(r"\.docx$", filename, re.IGNORECASE):
        docx_parser = Docx()
        ti_list, tbls = docx_parser(filename, binary,
                                    from_page=0, to_page=10000, callback=callback)
        res = tokenize_table(tbls, doc, eng)
        for text, image in ti_list:
            d = copy.deepcopy(doc)
            d['image'] = image
            tokenize(d, text, eng)
            res.append(d)
        return res
    else:
        raise NotImplementedError("file type not supported yet(pdf and docx supported)")
    



if __name__ == "__main__":
    import sys


    def dummy(prog=None, msg=""):
        pass


    chunk(sys.argv[1], callback=dummy)