File size: 10,512 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import copy
import re
from collections import Counter

from api.db import ParserType
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
from deepdoc.parser import PdfParser, PlainParser
import numpy as np
from rag.utils import num_tokens_from_string


class Pdf(PdfParser):
    def __init__(self):
        self.model_speciess = ParserType.PAPER.value
        super().__init__()

    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        callback(msg="OCR is running...")
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback
        )
        callback(msg="OCR finished.")

        from timeit import default_timer as timer
        start = timer()
        self._layouts_rec(zoomin)
        callback(0.63, "Layout analysis finished")
        print("layouts:", timer() - start)
        self._table_transformer_job(zoomin)
        callback(0.68, "Table analysis finished")
        self._text_merge()
        tbls = self._extract_table_figure(True, zoomin, True, True)
        column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
        self._concat_downward()
        self._filter_forpages()
        callback(0.75, "Text merging finished.")

        # clean mess
        if column_width < self.page_images[0].size[0] / zoomin / 2:
            print("two_column...................", column_width,
                  self.page_images[0].size[0] / zoomin / 2)
            self.boxes = self.sort_X_by_page(self.boxes, column_width / 2)
        for b in self.boxes:
            b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())

        def _begin(txt):
            return re.match(
                "[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
                txt.lower().strip())

        if from_page > 0:
            return {
                "title": "",
                "authors": "",
                "abstract": "",
                "sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes if
                             re.match(r"(text|title)", b.get("layoutno", "text"))],
                "tables": tbls
            }
        # get title and authors
        title = ""
        authors = []
        i = 0
        while i < min(32, len(self.boxes)-1):
            b = self.boxes[i]
            i += 1
            if b.get("layoutno", "").find("title") >= 0:
                title = b["text"]
                if _begin(title):
                    title = ""
                    break
                for j in range(3):
                    if _begin(self.boxes[i + j]["text"]):
                        break
                    authors.append(self.boxes[i + j]["text"])
                    break
                break
        # get abstract
        abstr = ""
        i = 0
        while i + 1 < min(32, len(self.boxes)):
            b = self.boxes[i]
            i += 1
            txt = b["text"].lower().strip()
            if re.match("(abstract|摘要)", txt):
                if len(txt.split(" ")) > 32 or len(txt) > 64:
                    abstr = txt + self._line_tag(b, zoomin)
                    break
                txt = self.boxes[i]["text"].lower().strip()
                if len(txt.split(" ")) > 32 or len(txt) > 64:
                    abstr = txt + self._line_tag(self.boxes[i], zoomin)
                i += 1
                break
        if not abstr:
            i = 0

        callback(
            0.8, "Page {}~{}: Text merging finished".format(
                from_page, min(
                    to_page, self.total_page)))
        for b in self.boxes:
            print(b["text"], b.get("layoutno"))
        print(tbls)

        return {
            "title": title,
            "authors": " ".join(authors),
            "abstract": abstr,
            "sections": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
                         re.match(r"(text|title)", b.get("layoutno", "text"))],
            "tables": tbls
        }


def chunk(filename, binary=None, from_page=0, to_page=100000,

          lang="Chinese", callback=None, **kwargs):
    """

        Only pdf is supported.

        The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.

    """
    pdf_parser = None
    if re.search(r"\.pdf$", filename, re.IGNORECASE):
        if not kwargs.get("parser_config", {}).get("layout_recognize", True):
            pdf_parser = PlainParser()
            paper = {
                "title": filename,
                "authors": " ",
                "abstract": "",
                "sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0],
                "tables": []
            }
        else:
            pdf_parser = Pdf()
            paper = pdf_parser(filename if not binary else binary,
                               from_page=from_page, to_page=to_page, callback=callback)
    else:
        raise NotImplementedError("file type not supported yet(pdf supported)")

    doc = {"docnm_kwd": filename, "authors_tks": rag_tokenizer.tokenize(paper["authors"]),
           "title_tks": rag_tokenizer.tokenize(paper["title"] if paper["title"] else filename)}
    doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
    doc["authors_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["authors_tks"])
    # is it English
    eng = lang.lower() == "english"  # pdf_parser.is_english
    print("It's English.....", eng)

    res = tokenize_table(paper["tables"], doc, eng)

    if paper["abstract"]:
        d = copy.deepcopy(doc)
        txt = pdf_parser.remove_tag(paper["abstract"])
        d["important_kwd"] = ["abstract", "总结", "概括", "summary", "summarize"]
        d["important_tks"] = " ".join(d["important_kwd"])
        d["image"], poss = pdf_parser.crop(
            paper["abstract"], need_position=True)
        add_positions(d, poss)
        tokenize(d, txt, eng)
        res.append(d)

    sorted_sections = paper["sections"]
    # set pivot using the most frequent type of title,
    # then merge between 2 pivot
    bull = bullets_category([txt for txt, _ in sorted_sections])
    most_level, levels = title_frequency(bull, sorted_sections)
    assert len(sorted_sections) == len(levels)
    sec_ids = []
    sid = 0
    for i, lvl in enumerate(levels):
        if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
            sid += 1
        sec_ids.append(sid)
        print(lvl, sorted_sections[i][0], most_level, sid)

    chunks = []
    last_sid = -2
    for (txt, _), sec_id in zip(sorted_sections, sec_ids):
        if sec_id == last_sid:
            if chunks:
                chunks[-1] += "\n" + txt
                continue
        chunks.append(txt)
        last_sid = sec_id
    res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
    return res


"""

    readed = [0] * len(paper["lines"])

    # find colon firstly

    i = 0

    while i + 1 < len(paper["lines"]):

        txt = pdf_parser.remove_tag(paper["lines"][i][0])

        j = i

        if txt.strip("\n").strip()[-1] not in "::":

            i += 1

            continue

        i += 1

        while i < len(paper["lines"]) and not paper["lines"][i][0]:

            i += 1

        if i >= len(paper["lines"]): break

        proj = [paper["lines"][i][0].strip()]

        i += 1

        while i < len(paper["lines"]) and paper["lines"][i][0].strip()[0] == proj[-1][0]:

            proj.append(paper["lines"][i])

            i += 1

        for k in range(j, i): readed[k] = True

        txt = txt[::-1]

        if eng:

            r = re.search(r"(.*?) ([\\.;?!]|$)", txt)

            txt = r.group(1)[::-1] if r else txt[::-1]

        else:

            r = re.search(r"(.*?) ([。?;!]|$)", txt)

            txt = r.group(1)[::-1] if r else txt[::-1]

        for p in proj:

            d = copy.deepcopy(doc)

            txt += "\n" + pdf_parser.remove_tag(p)

            d["image"], poss = pdf_parser.crop(p, need_position=True)

            add_positions(d, poss)

            tokenize(d, txt, eng)

            res.append(d)



    i = 0

    chunk = []

    tk_cnt = 0

    def add_chunk():

        nonlocal chunk, res, doc, pdf_parser, tk_cnt

        d = copy.deepcopy(doc)

        ck = "\n".join(chunk)

        tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)

        d["image"], poss = pdf_parser.crop(ck, need_position=True)

        add_positions(d, poss)

        res.append(d)

        chunk = []

        tk_cnt = 0



    while i < len(paper["lines"]):

        if tk_cnt > 128:

            add_chunk()

        if readed[i]:

            i += 1

            continue

        readed[i] = True

        txt, layouts = paper["lines"][i]

        txt_ = pdf_parser.remove_tag(txt)

        i += 1

        cnt = num_tokens_from_string(txt_)

        if any([

            layouts.find("title") >= 0 and chunk,

            cnt + tk_cnt > 128 and tk_cnt > 32,

        ]):

            add_chunk()

            chunk = [txt]

            tk_cnt = cnt

        else:

            chunk.append(txt)

            tk_cnt += cnt



    if chunk: add_chunk()

    for i, d in enumerate(res):

        print(d)

        # d["image"].save(f"./logs/{i}.jpg")

    return res

"""

if __name__ == "__main__":
    import sys

    def dummy(prog=None, msg=""):
        pass
    chunk(sys.argv[1], callback=dummy)