File size: 39,514 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
from dashscope import Generation
from abc import ABC
from openai import OpenAI
import openai
from ollama import Client
from volcengine.maas.v2 import MaasService
from rag.nlp import is_english
from rag.utils import num_tokens_from_string
from groq import Groq
import os 
import json
import requests
import asyncio

class Base(ABC):
    def __init__(self, key, model_name, base_url):
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                **gen_conf)
            ans = response.choices[0].message.content.strip()
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response.usage.total_tokens
        except openai.APIError as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                stream=True,
                **gen_conf)
            for resp in response:
                if not resp.choices:continue
                if not resp.choices[0].delta.content:
                    resp.choices[0].delta.content = ""  
                ans += resp.choices[0].delta.content
                total_tokens = (
                    (
                        total_tokens
                        + num_tokens_from_string(resp.choices[0].delta.content)
                    )
                    if not hasattr(resp, "usage") or not resp.usage
                    else resp.usage.get("total_tokens",total_tokens)
                )
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
                yield ans

        except openai.APIError as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class GptTurbo(Base):
    def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
        if not base_url: base_url="https://api.openai.com/v1"
        super().__init__(key, model_name, base_url)


class MoonshotChat(Base):
    def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
        if not base_url: base_url="https://api.moonshot.cn/v1"
        super().__init__(key, model_name, base_url)


class XinferenceChat(Base):
    def __init__(self, key=None, model_name="", base_url=""):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        key = "xxx"
        super().__init__(key, model_name, base_url)


class DeepSeekChat(Base):
    def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
        if not base_url: base_url="https://api.deepseek.com/v1"
        super().__init__(key, model_name, base_url)


class AzureChat(Base):
    def __init__(self, key, model_name, **kwargs):
        self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
        self.model_name = model_name


class BaiChuanChat(Base):
    def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
        if not base_url:
            base_url = "https://api.baichuan-ai.com/v1"
        super().__init__(key, model_name, base_url)

    @staticmethod
    def _format_params(params):
        return {
            "temperature": params.get("temperature", 0.3),
            "max_tokens": params.get("max_tokens", 2048),
            "top_p": params.get("top_p", 0.85),
        }

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                extra_body={
                    "tools": [{
                        "type": "web_search",
                        "web_search": {
                            "enable": True,
                            "search_mode": "performance_first"
                        }
                    }]
                },
                **self._format_params(gen_conf))
            ans = response.choices[0].message.content.strip()
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response.usage.total_tokens
        except openai.APIError as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                extra_body={
                    "tools": [{
                        "type": "web_search",
                        "web_search": {
                            "enable": True,
                            "search_mode": "performance_first"
                        }
                    }]
                },
                stream=True,
                **self._format_params(gen_conf))
            for resp in response:
                if not resp.choices:continue
                if not resp.choices[0].delta.content:
                    resp.choices[0].delta.content = ""  
                ans += resp.choices[0].delta.content
                total_tokens = (
                    (
                        total_tokens
                        + num_tokens_from_string(resp.choices[0].delta.content)
                    )
                    if not hasattr(resp, "usage")
                    else resp.usage["total_tokens"]
                )
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class QWenChat(Base):
    def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
        import dashscope
        dashscope.api_key = key
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        from http import HTTPStatus
        if system:
            history.insert(0, {"role": "system", "content": system})
        response = Generation.call(
            self.model_name,
            messages=history,
            result_format='message',
            **gen_conf
        )
        ans = ""
        tk_count = 0
        if response.status_code == HTTPStatus.OK:
            ans += response.output.choices[0]['message']['content']
            tk_count += response.usage.total_tokens
            if response.output.choices[0].get("finish_reason", "") == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, tk_count

        return "**ERROR**: " + response.message, tk_count

    def chat_streamly(self, system, history, gen_conf):
        from http import HTTPStatus
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        tk_count = 0
        try:
            response = Generation.call(
                self.model_name,
                messages=history,
                result_format='message',
                stream=True,
                **gen_conf
            )
            for resp in response:
                if resp.status_code == HTTPStatus.OK:
                    ans = resp.output.choices[0]['message']['content']
                    tk_count = resp.usage.total_tokens
                    if resp.output.choices[0].get("finish_reason", "") == "length":
                        ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                            [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
                    yield ans
                else:
                    yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access")<0 else "Out of credit. Please set the API key in **settings > Model providers.**"
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield tk_count


class ZhipuChat(Base):
    def __init__(self, key, model_name="glm-3-turbo", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
            if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                **gen_conf
            )
            ans = response.choices[0].message.content.strip()
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response.usage.total_tokens
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
        ans = ""
        tk_count = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                stream=True,
                **gen_conf
            )
            for resp in response:
                if not resp.choices[0].delta.content:continue
                delta = resp.choices[0].delta.content
                ans += delta
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
                    tk_count = resp.usage.total_tokens
                if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield tk_count


class OllamaChat(Base):
    def __init__(self, key, model_name, **kwargs):
        self.client = Client(host=kwargs["base_url"])
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            options = {}
            if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
            if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
            if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
            if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
            if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
            response = self.client.chat(
                model=self.model_name,
                messages=history,
                options=options,
                keep_alive=-1
            )
            ans = response["message"]["content"].strip()
            return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        options = {}
        if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
        if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
        if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
        if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
        ans = ""
        try:
            response = self.client.chat(
                model=self.model_name,
                messages=history,
                stream=True,
                options=options,
                keep_alive=-1
            )
            for resp in response:
                if resp["done"]:
                    yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
                ans += resp["message"]["content"]
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)
        yield 0


class LocalAIChat(Base):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="empty", base_url=base_url)
        self.model_name = model_name.split("___")[0]


class LocalLLM(Base):
    class RPCProxy:
        def __init__(self, host, port):
            self.host = host
            self.port = int(port)
            self.__conn()

        def __conn(self):
            from multiprocessing.connection import Client

            self._connection = Client(
                (self.host, self.port), authkey=b"infiniflow-token4kevinhu"
            )

        def __getattr__(self, name):
            import pickle

            def do_rpc(*args, **kwargs):
                for _ in range(3):
                    try:
                        self._connection.send(pickle.dumps((name, args, kwargs)))
                        return pickle.loads(self._connection.recv())
                    except Exception as e:
                        self.__conn()
                raise Exception("RPC connection lost!")

            return do_rpc

    def __init__(self, key, model_name):
        from jina import Client

        self.client = Client(port=12345, protocol="grpc", asyncio=True)

    def _prepare_prompt(self, system, history, gen_conf):
        from rag.svr.jina_server import Prompt,Generation
        if system:
            history.insert(0, {"role": "system", "content": system})
        if "max_tokens" in gen_conf:
            gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
        return Prompt(message=history, gen_conf=gen_conf)

    def _stream_response(self, endpoint, prompt):
        from rag.svr.jina_server import Prompt,Generation
        answer = ""
        try:
            res = self.client.stream_doc(
                on=endpoint, inputs=prompt, return_type=Generation
            )
            loop = asyncio.get_event_loop()
            try:
                while True:
                    answer = loop.run_until_complete(res.__anext__()).text
                    yield answer
            except StopAsyncIteration:
                pass
        except Exception as e:
            yield answer + "\n**ERROR**: " + str(e)
        yield num_tokens_from_string(answer)

    def chat(self, system, history, gen_conf):
        prompt = self._prepare_prompt(system, history, gen_conf)
        chat_gen = self._stream_response("/chat", prompt)
        ans = next(chat_gen)
        total_tokens = next(chat_gen)
        return ans, total_tokens

    def chat_streamly(self, system, history, gen_conf):
        prompt = self._prepare_prompt(system, history, gen_conf)
        return self._stream_response("/stream", prompt)


class VolcEngineChat(Base):
    def __init__(self, key, model_name, base_url):
        """
        Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
        Assemble ak, sk, ep_id into api_key, store it as a dictionary type, and parse it for use
        model_name is for display only
        """
        self.client = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
        self.volc_ak = eval(key).get('volc_ak', '')
        self.volc_sk = eval(key).get('volc_sk', '')
        self.client.set_ak(self.volc_ak)
        self.client.set_sk(self.volc_sk)
        self.model_name = eval(key).get('ep_id', '')

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            req = {
                "parameters": {
                    "min_new_tokens": gen_conf.get("min_new_tokens", 1),
                    "top_k": gen_conf.get("top_k", 0),
                    "max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
                    "temperature": gen_conf.get("temperature", 0.1),
                    "max_new_tokens": gen_conf.get("max_tokens", 1000),
                    "top_p": gen_conf.get("top_p", 0.3),
                },
                "messages": history
            }
            response = self.client.chat(self.model_name, req)
            ans = response.choices[0].message.content.strip()
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response.usage.total_tokens
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        tk_count = 0
        try:
            req = {
                "parameters": {
                    "min_new_tokens": gen_conf.get("min_new_tokens", 1),
                    "top_k": gen_conf.get("top_k", 0),
                    "max_prompt_tokens": gen_conf.get("max_prompt_tokens", 30000),
                    "temperature": gen_conf.get("temperature", 0.1),
                    "max_new_tokens": gen_conf.get("max_tokens", 1000),
                    "top_p": gen_conf.get("top_p", 0.3),
                },
                "messages": history
            }
            stream = self.client.stream_chat(self.model_name, req)
            for resp in stream:
                if not resp.choices[0].message.content:
                    continue
                ans += resp.choices[0].message.content
                if resp.choices[0].finish_reason == "stop":
                    tk_count = resp.usage.total_tokens
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)
        yield tk_count


class MiniMaxChat(Base):
    def __init__(
        self,
        key,
        model_name,
        base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
    ):
        if not base_url:
            base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
        self.base_url = base_url
        self.model_name = model_name
        self.api_key = key

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json",
        }
        payload = json.dumps(
            {"model": self.model_name, "messages": history, **gen_conf}
        )
        try:
            response = requests.request(
                "POST", url=self.base_url, headers=headers, data=payload
            )
            response = response.json()
            ans = response["choices"][0]["message"]["content"].strip()
            if response["choices"][0]["finish_reason"] == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response["usage"]["total_tokens"]
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        total_tokens = 0
        try:
            headers = {
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            }
            payload = json.dumps(
                {
                    "model": self.model_name,
                    "messages": history,
                    "stream": True,
                    **gen_conf,
                }
            )
            response = requests.request(
                "POST",
                url=self.base_url,
                headers=headers,
                data=payload,
            )
            for resp in response.text.split("\n\n")[:-1]:
                resp = json.loads(resp[6:])
                text = ""
                if "choices" in resp and "delta" in resp["choices"][0]:
                    text = resp["choices"][0]["delta"]["content"]
                ans += text
                total_tokens = (
                    total_tokens + num_tokens_from_string(text)
                    if "usage" not in resp
                    else resp["usage"]["total_tokens"]
                )
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class MistralChat(Base):

    def __init__(self, key, model_name, base_url=None):
        from mistralai.client import MistralClient
        self.client = MistralClient(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        try:
            response = self.client.chat(
                model=self.model_name,
                messages=history,
                **gen_conf)
            ans = response.choices[0].message.content
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response.usage.total_tokens
        except openai.APIError as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat_stream(
                model=self.model_name,
                messages=history,
                **gen_conf)
            for resp in response:
                if not resp.choices or not resp.choices[0].delta.content:continue
                ans += resp.choices[0].delta.content
                total_tokens += 1
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
                yield ans

        except openai.APIError as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class BedrockChat(Base):

    def __init__(self, key, model_name, **kwargs):
        import boto3
        self.bedrock_ak = eval(key).get('bedrock_ak', '')
        self.bedrock_sk = eval(key).get('bedrock_sk', '')
        self.bedrock_region = eval(key).get('bedrock_region', '')
        self.model_name = model_name
        self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
                                   aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)

    def chat(self, system, history, gen_conf):
        from botocore.exceptions import ClientError
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        if "max_tokens" in gen_conf:
            gen_conf["maxTokens"] = gen_conf["max_tokens"]
            _ = gen_conf.pop("max_tokens")
        if "top_p" in gen_conf:
            gen_conf["topP"] = gen_conf["top_p"]
            _ = gen_conf.pop("top_p")

        try:
            # Send the message to the model, using a basic inference configuration.
            response = self.client.converse(
                modelId=self.model_name,
                messages=history,
                inferenceConfig=gen_conf
            )
            
            # Extract and print the response text.
            ans = response["output"]["message"]["content"][0]["text"]
            return ans, num_tokens_from_string(ans)

        except (ClientError, Exception) as e:
            return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0

    def chat_streamly(self, system, history, gen_conf):
        from botocore.exceptions import ClientError
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        if "max_tokens" in gen_conf:
            gen_conf["maxTokens"] = gen_conf["max_tokens"]
            _ = gen_conf.pop("max_tokens")
        if "top_p" in gen_conf:
            gen_conf["topP"] = gen_conf["top_p"]
            _ = gen_conf.pop("top_p")

        if self.model_name.split('.')[0] == 'ai21':
            try:
                response = self.client.converse(
                    modelId=self.model_name,
                    messages=history,
                    inferenceConfig=gen_conf
                )
                ans = response["output"]["message"]["content"][0]["text"]
                return ans, num_tokens_from_string(ans)

            except (ClientError, Exception) as e:
                return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0

        ans = ""
        try:
            # Send the message to the model, using a basic inference configuration.
            streaming_response = self.client.converse_stream(
                modelId=self.model_name,
                messages=history,
                inferenceConfig=gen_conf
            )

            # Extract and print the streamed response text in real-time.
            for resp in streaming_response["stream"]:
                if "contentBlockDelta" in resp:
                    ans += resp["contentBlockDelta"]["delta"]["text"]
                    yield ans
            
        except (ClientError, Exception) as e:
            yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"

        yield num_tokens_from_string(ans)

class GeminiChat(Base):

    def __init__(self, key, model_name,base_url=None):
        from google.generativeai import client,GenerativeModel 
        
        client.configure(api_key=key)
        _client = client.get_default_generative_client()
        self.model_name = 'models/' + model_name
        self.model = GenerativeModel(model_name=self.model_name)
        self.model._client = _client
        
    def chat(self,system,history,gen_conf):
        if system:
            history.insert(0, {"role": "user", "parts": system})
        if 'max_tokens' in gen_conf:
            gen_conf['max_output_tokens'] = gen_conf['max_tokens']
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_output_tokens"]:
                del gen_conf[k]
        for item in history:
            if 'role' in item and item['role'] == 'assistant':
                item['role'] = 'model'
            if  'content' in item :
                item['parts'] = item.pop('content')
        
        try:
            response = self.model.generate_content(
                history,
                generation_config=gen_conf)
            ans = response.text
            return ans, response.usage_metadata.total_token_count
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "user", "parts": system})
        if 'max_tokens' in gen_conf:
            gen_conf['max_output_tokens'] = gen_conf['max_tokens']
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_output_tokens"]:
                del gen_conf[k]
        for item in history:
            if 'role' in item and item['role'] == 'assistant':
                item['role'] = 'model'
            if  'content' in item :
                item['parts'] = item.pop('content')
        ans = ""
        try:
            response = self.model.generate_content(
                history,
                generation_config=gen_conf,stream=True)
            for resp in response:
                ans += resp.text
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield  response._chunks[-1].usage_metadata.total_token_count


class GroqChat:
    def __init__(self, key, model_name,base_url=''):
        self.client = Groq(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        ans = ""
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                **gen_conf
            )
            ans = response.choices[0].message.content
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
            return ans, response.usage.total_tokens
        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                stream=True,
                **gen_conf
            )
            for resp in response:
                if not resp.choices or not resp.choices[0].delta.content:
                    continue
                ans += resp.choices[0].delta.content
                total_tokens += 1
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


## openrouter
class OpenRouterChat(Base):
    def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
        if not base_url:
            base_url = "https://openrouter.ai/api/v1"
        super().__init__(key, model_name, base_url)


class StepFunChat(Base):
    def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
        if not base_url:
            base_url = "https://api.stepfun.com/v1"
        super().__init__(key, model_name, base_url)


class NvidiaChat(Base):
    def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
        if not base_url:
            base_url = "https://integrate.api.nvidia.com/v1"
        super().__init__(key, model_name, base_url)


class LmStudioChat(Base):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="lm-studio", base_url=base_url)
        self.model_name = model_name


class OpenAI_APIChat(Base):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        model_name = model_name.split("___")[0]
        super().__init__(key, model_name, base_url)


class CoHereChat(Base):
    def __init__(self, key, model_name, base_url=""):
        from cohere import Client

        self.client = Client(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        if "top_p" in gen_conf:
            gen_conf["p"] = gen_conf.pop("top_p")
        if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
            gen_conf.pop("presence_penalty")
        for item in history:
            if "role" in item and item["role"] == "user":
                item["role"] = "USER"
            if "role" in item and item["role"] == "assistant":
                item["role"] = "CHATBOT"
            if "content" in item:
                item["message"] = item.pop("content")
        mes = history.pop()["message"]
        ans = ""
        try:
            response = self.client.chat(
                model=self.model_name, chat_history=history, message=mes, **gen_conf
            )
            ans = response.text
            if response.finish_reason == "MAX_TOKENS":
                ans += (
                    "...\nFor the content length reason, it stopped, continue?"
                    if is_english([ans])
                    else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
                )
            return (
                ans,
                response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
            )
        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        if "top_p" in gen_conf:
            gen_conf["p"] = gen_conf.pop("top_p")
        if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
            gen_conf.pop("presence_penalty")
        for item in history:
            if "role" in item and item["role"] == "user":
                item["role"] = "USER"
            if "role" in item and item["role"] == "assistant":
                item["role"] = "CHATBOT"
            if "content" in item:
                item["message"] = item.pop("content")
        mes = history.pop()["message"]
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat_stream(
                model=self.model_name, chat_history=history, message=mes, **gen_conf
            )
            for resp in response:
                if resp.event_type == "text-generation":
                    ans += resp.text
                    total_tokens += num_tokens_from_string(resp.text)
                elif resp.event_type == "stream-end":
                    if resp.finish_reason == "MAX_TOKENS":
                        ans += (
                            "...\nFor the content length reason, it stopped, continue?"
                            if is_english([ans])
                            else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
                        )
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class LeptonAIChat(Base):
    def __init__(self, key, model_name, base_url=None):
        if not base_url:
            base_url = os.path.join("https://"+model_name+".lepton.run","api","v1")
        super().__init__(key, model_name, base_url)