File size: 21,292 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import re
from typing import Optional
import  threading
import requests
from huggingface_hub import snapshot_download
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
import os
from abc import ABC
from ollama import Client
import dashscope
from openai import OpenAI
from FlagEmbedding import FlagModel
import torch
import numpy as np
import asyncio
from api.utils.file_utils import get_home_cache_dir
from rag.utils import num_tokens_from_string, truncate
import google.generativeai as genai 

class Base(ABC):
    def __init__(self, key, model_name):
        pass

    def encode(self, texts: list, batch_size=32):
        raise NotImplementedError("Please implement encode method!")

    def encode_queries(self, text: str):
        raise NotImplementedError("Please implement encode method!")


class DefaultEmbedding(Base):
    _model = None
    _model_lock = threading.Lock()
    def __init__(self, key, model_name, **kwargs):
        """
        If you have trouble downloading HuggingFace models, -_^ this might help!!

        For Linux:
        export HF_ENDPOINT=https://hf-mirror.com

        For Windows:
        Good luck
        ^_-

        """
        if not DefaultEmbedding._model:
            with DefaultEmbedding._model_lock:
                if not DefaultEmbedding._model:
                    try:
                        DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
                                                            query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                                                            use_fp16=torch.cuda.is_available())
                    except Exception as e:
                        model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
                                                      local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
                                                      local_dir_use_symlinks=False)
                        DefaultEmbedding._model = FlagModel(model_dir,
                                                            query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                                                            use_fp16=torch.cuda.is_available())
        self._model = DefaultEmbedding._model

    def encode(self, texts: list, batch_size=32):
        texts = [truncate(t, 2048) for t in texts]
        token_count = 0
        for t in texts:
            token_count += num_tokens_from_string(t)
        res = []
        for i in range(0, len(texts), batch_size):
            res.extend(self._model.encode(texts[i:i + batch_size]).tolist())
        return np.array(res), token_count

    def encode_queries(self, text: str):
        token_count = num_tokens_from_string(text)
        return self._model.encode_queries([text]).tolist()[0], token_count


class OpenAIEmbed(Base):
    def __init__(self, key, model_name="text-embedding-ada-002",
                 base_url="https://api.openai.com/v1"):
        if not base_url:
            base_url = "https://api.openai.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        texts = [truncate(t, 8196) for t in texts]
        res = self.client.embeddings.create(input=texts,
                                            model=self.model_name)
        return np.array([d.embedding for d in res.data]
                        ), res.usage.total_tokens

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=[truncate(text, 8196)],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class LocalAIEmbed(Base):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("Local embedding model url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="empty", base_url=base_url)
        self.model_name = model_name.split("___")[0]

    def encode(self, texts: list, batch_size=32):
        res = self.client.embeddings.create(input=texts, model=self.model_name)
        return (
            np.array([d.embedding for d in res.data]),
            1024,
        )  # local embedding for LmStudio donot count tokens

    def encode_queries(self, text):
        embds, cnt = self.encode([text])
        return np.array(embds[0]), cnt


class AzureEmbed(OpenAIEmbed):
    def __init__(self, key, model_name, **kwargs):
        self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
        self.model_name = model_name


class BaiChuanEmbed(OpenAIEmbed):
    def __init__(self, key,
                 model_name='Baichuan-Text-Embedding',
                 base_url='https://api.baichuan-ai.com/v1'):
        if not base_url:
            base_url = "https://api.baichuan-ai.com/v1"
        super().__init__(key, model_name, base_url)


class QWenEmbed(Base):
    def __init__(self, key, model_name="text_embedding_v2", **kwargs):
        dashscope.api_key = key
        self.model_name = model_name

    def encode(self, texts: list, batch_size=10):
        import dashscope
        try:
            res = []
            token_count = 0
            texts = [truncate(t, 2048) for t in texts]
            for i in range(0, len(texts), batch_size):
                resp = dashscope.TextEmbedding.call(
                    model=self.model_name,
                    input=texts[i:i + batch_size],
                    text_type="document"
                )
                embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
                for e in resp["output"]["embeddings"]:
                    embds[e["text_index"]] = e["embedding"]
                res.extend(embds)
                token_count += resp["usage"]["total_tokens"]
            return np.array(res), token_count
        except Exception as e:
            raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
        return np.array([]), 0

    def encode_queries(self, text):
        try:
            resp = dashscope.TextEmbedding.call(
                model=self.model_name,
                input=text[:2048],
                text_type="query"
            )
            return np.array(resp["output"]["embeddings"][0]
                            ["embedding"]), resp["usage"]["total_tokens"]
        except Exception as e:
            raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
        return np.array([]), 0


class ZhipuEmbed(Base):
    def __init__(self, key, model_name="embedding-2", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        arr = []
        tks_num = 0
        for txt in texts:
            res = self.client.embeddings.create(input=txt,
                                                model=self.model_name)
            arr.append(res.data[0].embedding)
            tks_num += res.usage.total_tokens
        return np.array(arr), tks_num

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=text,
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class OllamaEmbed(Base):
    def __init__(self, key, model_name, **kwargs):
        self.client = Client(host=kwargs["base_url"])
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        arr = []
        tks_num = 0
        for txt in texts:
            res = self.client.embeddings(prompt=txt,
                                         model=self.model_name)
            arr.append(res["embedding"])
            tks_num += 128
        return np.array(arr), tks_num

    def encode_queries(self, text):
        res = self.client.embeddings(prompt=text,
                                     model=self.model_name)
        return np.array(res["embedding"]), 128


class FastEmbed(Base):
    _model = None

    def __init__(
            self,
            key: Optional[str] = None,
            model_name: str = "BAAI/bge-small-en-v1.5",
            cache_dir: Optional[str] = None,
            threads: Optional[int] = None,
            **kwargs,
    ):
        from fastembed import TextEmbedding
        if not FastEmbed._model:
            self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)

    def encode(self, texts: list, batch_size=32):
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        encodings = self._model.model.tokenizer.encode_batch(texts)
        total_tokens = sum(len(e) for e in encodings)

        embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]

        return np.array(embeddings), total_tokens

    def encode_queries(self, text: str):
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        encoding = self._model.model.tokenizer.encode(text)
        embedding = next(self._model.query_embed(text)).tolist()

        return np.array(embedding), len(encoding.ids)


class XinferenceEmbed(Base):
    def __init__(self, key, model_name="", base_url=""):
        self.client = OpenAI(api_key="xxx", base_url=base_url)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        res = self.client.embeddings.create(input=texts,
                                            model=self.model_name)
        return np.array([d.embedding for d in res.data]
                        ), res.usage.total_tokens

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=[text],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class YoudaoEmbed(Base):
    _client = None

    def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
        from BCEmbedding import EmbeddingModel as qanthing
        if not YoudaoEmbed._client:
            try:
                print("LOADING BCE...")
                YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
                    get_home_cache_dir(),
                    "bce-embedding-base_v1"))
            except Exception as e:
                YoudaoEmbed._client = qanthing(
                    model_name_or_path=model_name.replace(
                        "maidalun1020", "InfiniFlow"))

    def encode(self, texts: list, batch_size=10):
        res = []
        token_count = 0
        for t in texts:
            token_count += num_tokens_from_string(t)
        for i in range(0, len(texts), batch_size):
            embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
            res.extend(embds)
        return np.array(res), token_count

    def encode_queries(self, text):
        embds = YoudaoEmbed._client.encode([text])
        return np.array(embds[0]), num_tokens_from_string(text)


class JinaEmbed(Base):
    def __init__(self, key, model_name="jina-embeddings-v2-base-zh",
                 base_url="https://api.jina.ai/v1/embeddings"):

        self.base_url = "https://api.jina.ai/v1/embeddings"
        self.headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {key}"
        }
        self.model_name = model_name

    def encode(self, texts: list, batch_size=None):
        texts = [truncate(t, 8196) for t in texts]
        data = {
            "model": self.model_name,
            "input": texts,
            'encoding_type': 'float'
        }
        res = requests.post(self.base_url, headers=self.headers, json=data).json()
        return np.array([d["embedding"] for d in res["data"]]), res["usage"]["total_tokens"]

    def encode_queries(self, text):
        embds, cnt = self.encode([text])
        return np.array(embds[0]), cnt


class InfinityEmbed(Base):
    _model = None

    def __init__(
            self,
            model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
            engine_kwargs: dict = {},
            key = None,
    ):

        from infinity_emb import EngineArgs
        from infinity_emb.engine import AsyncEngineArray

        self._default_model = model_names[0]
        self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])

    async def _embed(self, sentences: list[str], model_name: str = ""):
        if not model_name:
            model_name = self._default_model
        engine = self.engine_array[model_name]
        was_already_running = engine.is_running
        if not was_already_running:
            await engine.astart()
        embeddings, usage = await engine.embed(sentences=sentences)
        if not was_already_running:
            await engine.astop()
        return embeddings, usage

    def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        embeddings, usage = asyncio.run(self._embed(texts, model_name))
        return np.array(embeddings), usage

    def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        return self.encode([text])


class MistralEmbed(Base):
    def __init__(self, key, model_name="mistral-embed",
                 base_url=None):
        from mistralai.client import MistralClient
        self.client = MistralClient(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        texts = [truncate(t, 8196) for t in texts]
        res = self.client.embeddings(input=texts,
                                            model=self.model_name)
        return np.array([d.embedding for d in res.data]
                        ), res.usage.total_tokens

    def encode_queries(self, text):
        res = self.client.embeddings(input=[truncate(text, 8196)],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class BedrockEmbed(Base):
    def __init__(self, key, model_name,
                 **kwargs):
        import boto3
        self.bedrock_ak = eval(key).get('bedrock_ak', '')
        self.bedrock_sk = eval(key).get('bedrock_sk', '')
        self.bedrock_region = eval(key).get('bedrock_region', '')
        self.model_name = model_name
        self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
                                   aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)

    def encode(self, texts: list, batch_size=32):
        texts = [truncate(t, 8196) for t in texts]
        embeddings = []
        token_count = 0
        for text in texts:
            if self.model_name.split('.')[0] == 'amazon':
                body = {"inputText": text}
            elif self.model_name.split('.')[0] == 'cohere':
                body = {"texts": [text], "input_type": 'search_document'}

            response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
            model_response = json.loads(response["body"].read())
            embeddings.extend([model_response["embedding"]])
            token_count += num_tokens_from_string(text)

        return np.array(embeddings), token_count

    def encode_queries(self, text):

        embeddings = []
        token_count = num_tokens_from_string(text)
        if self.model_name.split('.')[0] == 'amazon':
            body = {"inputText": truncate(text, 8196)}
        elif self.model_name.split('.')[0] == 'cohere':
            body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}

        response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
        model_response = json.loads(response["body"].read())
        embeddings.extend([model_response["embedding"]])

        return np.array(embeddings), token_count

class GeminiEmbed(Base):
    def __init__(self, key, model_name='models/text-embedding-004',
                 **kwargs):
        genai.configure(api_key=key)
        self.model_name = 'models/' + model_name
        
    def encode(self, texts: list, batch_size=32):
        texts = [truncate(t, 2048) for t in texts]
        token_count = sum(num_tokens_from_string(text) for text in texts)
        result = genai.embed_content(
            model=self.model_name,
            content=texts,
            task_type="retrieval_document",
            title="Embedding of list of strings")
        return np.array(result['embedding']),token_count
    
    def encode_queries(self, text):
        result = genai.embed_content(
            model=self.model_name,
            content=truncate(text,2048),
            task_type="retrieval_document",
            title="Embedding of single string")
        token_count = num_tokens_from_string(text)
        return np.array(result['embedding']),token_count

class NvidiaEmbed(Base):
    def __init__(
        self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
    ):
        if not base_url:
            base_url = "https://integrate.api.nvidia.com/v1/embeddings"
        self.api_key = key
        self.base_url = base_url
        self.headers = {
            "accept": "application/json",
            "Content-Type": "application/json",
            "authorization": f"Bearer {self.api_key}",
        }
        self.model_name = model_name
        if model_name == "nvidia/embed-qa-4":
            self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
            self.model_name = "NV-Embed-QA"
        if model_name == "snowflake/arctic-embed-l":
            self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"

    def encode(self, texts: list, batch_size=None):
        payload = {
            "input": texts,
            "input_type": "query",
            "model": self.model_name,
            "encoding_format": "float",
            "truncate": "END",
        }
        res = requests.post(self.base_url, headers=self.headers, json=payload).json()
        return (
            np.array([d["embedding"] for d in res["data"]]),
            res["usage"]["total_tokens"],
        )

    def encode_queries(self, text):
        embds, cnt = self.encode([text])
        return np.array(embds[0]), cnt


class LmStudioEmbed(LocalAIEmbed):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="lm-studio", base_url=base_url)
        self.model_name = model_name


class OpenAI_APIEmbed(OpenAIEmbed):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name.split("___")[0]


class CoHereEmbed(Base):
    def __init__(self, key, model_name, base_url=None):
        from cohere import Client

        self.client = Client(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        res = self.client.embed(
            texts=texts,
            model=self.model_name,
            input_type="search_query",
            embedding_types=["float"],
        )
        return np.array([d for d in res.embeddings.float]), int(
            res.meta.billed_units.input_tokens
        )

    def encode_queries(self, text):
        res = self.client.embed(
            texts=[text],
            model=self.model_name,
            input_type="search_query",
            embedding_types=["float"],
        )
        return np.array([d for d in res.embeddings.float]), int(
            res.meta.billed_units.input_tokens
        )