File size: 18,623 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import json
import re
from copy import deepcopy

from elasticsearch_dsl import Q, Search
from typing import List, Optional, Dict, Union
from dataclasses import dataclass

from rag.settings import es_logger
from rag.utils import rmSpace
from rag.nlp import rag_tokenizer, query
import numpy as np


def index_name(uid): return f"ragflow_{uid}"


class Dealer:
    def __init__(self, es):
        self.qryr = query.EsQueryer(es)
        self.qryr.flds = [
            "title_tks^10",
            "title_sm_tks^5",
            "important_kwd^30",
            "important_tks^20",
            "content_ltks^2",
            "content_sm_ltks"]
        self.es = es

    @dataclass
    class SearchResult:
        total: int
        ids: List[str]
        query_vector: List[float] = None
        field: Optional[Dict] = None
        highlight: Optional[Dict] = None
        aggregation: Union[List, Dict, None] = None
        keywords: Optional[List[str]] = None
        group_docs: List[List] = None

    def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
        qv, c = emb_mdl.encode_queries(txt)
        return {
            "field": "q_%d_vec" % len(qv),
            "k": topk,
            "similarity": sim,
            "num_candidates": topk * 2,
            "query_vector": [float(v) for v in qv]
        }

    def _add_filters(self, bqry, req):
        if req.get("kb_ids"):
            bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
        if req.get("doc_ids"):
            bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
        if req.get("knowledge_graph_kwd"):
            bqry.filter.append(Q("terms", knowledge_graph_kwd=req["knowledge_graph_kwd"]))
        if "available_int" in req:
            if req["available_int"] == 0:
                bqry.filter.append(Q("range", available_int={"lt": 1}))
            else:
                bqry.filter.append(
                    Q("bool", must_not=Q("range", available_int={"lt": 1})))
        return bqry

    def search(self, req, idxnm, emb_mdl=None):
        qst = req.get("question", "")
        bqry, keywords = self.qryr.question(qst)
        bqry = self._add_filters(bqry, req)
        bqry.boost = 0.05

        s = Search()
        pg = int(req.get("page", 1)) - 1
        topk = int(req.get("topk", 1024))
        ps = int(req.get("size", topk))
        src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
                                 "image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int", "knowledge_graph_kwd",
                                 "q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])

        s = s.query(bqry)[pg * ps:(pg + 1) * ps]
        s = s.highlight("content_ltks")
        s = s.highlight("title_ltks")
        if not qst:
            if not req.get("sort"):
                s = s.sort(
                    #{"create_time": {"order": "desc", "unmapped_type": "date"}},
                    {"create_timestamp_flt": {
                        "order": "desc", "unmapped_type": "float"}}
                )
            else:
                s = s.sort(
                    {"page_num_int": {"order": "asc", "unmapped_type": "float",
                                      "mode": "avg", "numeric_type": "double"}},
                    {"top_int": {"order": "asc", "unmapped_type": "float",
                                 "mode": "avg", "numeric_type": "double"}},
                    #{"create_time": {"order": "desc", "unmapped_type": "date"}},
                    {"create_timestamp_flt": {
                        "order": "desc", "unmapped_type": "float"}}
                )

        if qst:
            s = s.highlight_options(
                fragment_size=120,
                number_of_fragments=5,
                boundary_scanner_locale="zh-CN",
                boundary_scanner="SENTENCE",
                boundary_chars=",./;:\\!(),。?:!……()——、"
            )
        s = s.to_dict()
        q_vec = []
        if req.get("vector"):
            assert emb_mdl, "No embedding model selected"
            s["knn"] = self._vector(
                qst, emb_mdl, req.get(
                    "similarity", 0.1), topk)
            s["knn"]["filter"] = bqry.to_dict()
            if "highlight" in s:
                del s["highlight"]
            q_vec = s["knn"]["query_vector"]
        es_logger.info("【Q】: {}".format(json.dumps(s)))
        res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
        es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
        if self.es.getTotal(res) == 0 and "knn" in s:
            bqry, _ = self.qryr.question(qst, min_match="10%")
            bqry = self._add_filters(bqry, req)
            s["query"] = bqry.to_dict()
            s["knn"]["filter"] = bqry.to_dict()
            s["knn"]["similarity"] = 0.17
            res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
            es_logger.info("【Q】: {}".format(json.dumps(s)))

        kwds = set([])
        for k in keywords:
            kwds.add(k)
            for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "):
                if len(kk) < 2:
                    continue
                if kk in kwds:
                    continue
                kwds.add(kk)

        aggs = self.getAggregation(res, "docnm_kwd")

        return self.SearchResult(
            total=self.es.getTotal(res),
            ids=self.es.getDocIds(res),
            query_vector=q_vec,
            aggregation=aggs,
            highlight=self.getHighlight(res),
            field=self.getFields(res, src),
            keywords=list(kwds)
        )

    def getAggregation(self, res, g):
        if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
            return
        bkts = res["aggregations"]["aggs_" + g]["buckets"]
        return [(b["key"], b["doc_count"]) for b in bkts]

    def getHighlight(self, res):
        def rmspace(line):
            eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
            r = []
            for t in line.split(" "):
                if not t:
                    continue
                if len(r) > 0 and len(
                        t) > 0 and r[-1][-1] in eng and t[0] in eng:
                    r.append(" ")
                r.append(t)
            r = "".join(r)
            return r

        ans = {}
        for d in res["hits"]["hits"]:
            hlts = d.get("highlight")
            if not hlts:
                continue
            ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
        return ans

    def getFields(self, sres, flds):
        res = {}
        if not flds:
            return {}
        for d in self.es.getSource(sres):
            m = {n: d.get(n) for n in flds if d.get(n) is not None}
            for n, v in m.items():
                if isinstance(v, type([])):
                    m[n] = "\t".join([str(vv) if not isinstance(
                        vv, list) else "\t".join([str(vvv) for vvv in vv]) for vv in v])
                    continue
                if not isinstance(v, type("")):
                    m[n] = str(m[n])
                if n.find("tks") > 0:
                    m[n] = rmSpace(m[n])

            if m:
                res[d["id"]] = m
        return res

    @staticmethod
    def trans2floats(txt):
        return [float(t) for t in txt.split("\t")]

    def insert_citations(self, answer, chunks, chunk_v,
                         embd_mdl, tkweight=0.1, vtweight=0.9):
        assert len(chunks) == len(chunk_v)
        pieces = re.split(r"(```)", answer)
        if len(pieces) >= 3:
            i = 0
            pieces_ = []
            while i < len(pieces):
                if pieces[i] == "```":
                    st = i
                    i += 1
                    while i < len(pieces) and pieces[i] != "```":
                        i += 1
                    if i < len(pieces):
                        i += 1
                    pieces_.append("".join(pieces[st: i]) + "\n")
                else:
                    pieces_.extend(
                        re.split(
                            r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
                            pieces[i]))
                    i += 1
            pieces = pieces_
        else:
            pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
        for i in range(1, len(pieces)):
            if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
                pieces[i - 1] += pieces[i][0]
                pieces[i] = pieces[i][1:]
        idx = []
        pieces_ = []
        for i, t in enumerate(pieces):
            if len(t) < 5:
                continue
            idx.append(i)
            pieces_.append(t)
        es_logger.info("{} => {}".format(answer, pieces_))
        if not pieces_:
            return answer, set([])

        ans_v, _ = embd_mdl.encode(pieces_)
        assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
            len(ans_v[0]), len(chunk_v[0]))

        chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split(" ")
                      for ck in chunks]
        cites = {}
        thr = 0.63
        while thr>0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
            for i, a in enumerate(pieces_):
                sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
                                                                chunk_v,
                                                                rag_tokenizer.tokenize(
                                                                    self.qryr.rmWWW(pieces_[i])).split(" "),
                                                                chunks_tks,
                                                                tkweight, vtweight)
                mx = np.max(sim) * 0.99
                es_logger.info("{} SIM: {}".format(pieces_[i], mx))
                if mx < thr:
                    continue
                cites[idx[i]] = list(
                    set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
            thr *= 0.8

        res = ""
        seted = set([])
        for i, p in enumerate(pieces):
            res += p
            if i not in idx:
                continue
            if i not in cites:
                continue
            for c in cites[i]:
                assert int(c) < len(chunk_v)
            for c in cites[i]:
                if c in seted:
                    continue
                res += f" ##{c}$$"
                seted.add(c)

        return res, seted

    def rerank(self, sres, query, tkweight=0.3,
               vtweight=0.7, cfield="content_ltks"):
        _, keywords = self.qryr.question(query)
        ins_embd = [
            Dealer.trans2floats(
                sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
        if not ins_embd:
            return [], [], []

        for i in sres.ids:
            if isinstance(sres.field[i].get("important_kwd", []), str):
                sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
        ins_tw = []
        for i in sres.ids:
            content_ltks = sres.field[i][cfield].split(" ")
            title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t]
            important_kwd = sres.field[i].get("important_kwd", [])
            tks = content_ltks + title_tks + important_kwd
            ins_tw.append(tks)

        sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
                                                        ins_embd,
                                                        keywords,
                                                        ins_tw, tkweight, vtweight)
        return sim, tksim, vtsim

    def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3,
               vtweight=0.7, cfield="content_ltks"):
        _, keywords = self.qryr.question(query)

        for i in sres.ids:
            if isinstance(sres.field[i].get("important_kwd", []), str):
                sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
        ins_tw = []
        for i in sres.ids:
            content_ltks = sres.field[i][cfield].split(" ")
            title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t]
            important_kwd = sres.field[i].get("important_kwd", [])
            tks = content_ltks + title_tks + important_kwd
            ins_tw.append(tks)

        tksim = self.qryr.token_similarity(keywords, ins_tw)
        vtsim,_ = rerank_mdl.similarity(" ".join(keywords), [rmSpace(" ".join(tks)) for tks in ins_tw])

        return tkweight*np.array(tksim) + vtweight*vtsim, tksim, vtsim

    def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
        return self.qryr.hybrid_similarity(ans_embd,
                                           ins_embd,
                                           rag_tokenizer.tokenize(ans).split(" "),
                                           rag_tokenizer.tokenize(inst).split(" "))

    def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
                  vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, rerank_mdl=None):
        ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
        if not question:
            return ranks
        req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": page_size,
               "question": question, "vector": True, "topk": top,
               "similarity": similarity_threshold,
               "available_int": 1}
        sres = self.search(req, index_name(tenant_id), embd_mdl)

        if rerank_mdl:
            sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
                sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
        else:
            sim, tsim, vsim = self.rerank(
                sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
        idx = np.argsort(sim * -1)

        dim = len(sres.query_vector)
        start_idx = (page - 1) * page_size
        for i in idx:
            if sim[i] < similarity_threshold:
                break
            ranks["total"] += 1
            start_idx -= 1
            if start_idx >= 0:
                continue
            if len(ranks["chunks"]) >= page_size:
                if aggs:
                    continue
                break
            id = sres.ids[i]
            dnm = sres.field[id]["docnm_kwd"]
            did = sres.field[id]["doc_id"]
            d = {
                "chunk_id": id,
                "content_ltks": sres.field[id]["content_ltks"],
                "content_with_weight": sres.field[id]["content_with_weight"],
                "doc_id": sres.field[id]["doc_id"],
                "docnm_kwd": dnm,
                "kb_id": sres.field[id]["kb_id"],
                "important_kwd": sres.field[id].get("important_kwd", []),
                "img_id": sres.field[id].get("img_id", ""),
                "similarity": sim[i],
                "vector_similarity": vsim[i],
                "term_similarity": tsim[i],
                "vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
                "positions": sres.field[id].get("position_int", "").split("\t")
            }
            if len(d["positions"]) % 5 == 0:
                poss = []
                for i in range(0, len(d["positions"]), 5):
                    poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
                                 float(d["positions"][i + 3]), float(d["positions"][i + 4])])
                d["positions"] = poss
            ranks["chunks"].append(d)
            if dnm not in ranks["doc_aggs"]:
                ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
            ranks["doc_aggs"][dnm]["count"] += 1
        ranks["doc_aggs"] = [{"doc_name": k,
                              "doc_id": v["doc_id"],
                              "count": v["count"]} for k,
                             v in sorted(ranks["doc_aggs"].items(),
                                         key=lambda x:x[1]["count"] * -1)]

        return ranks

    def sql_retrieval(self, sql, fetch_size=128, format="json"):
        from api.settings import chat_logger
        sql = re.sub(r"[ `]+", " ", sql)
        sql = sql.replace("%", "")
        es_logger.info(f"Get es sql: {sql}")
        replaces = []
        for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
            fld, v = r.group(1), r.group(3)
            match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
                fld, rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(v)))
            replaces.append(
                ("{}{}'{}'".format(
                    r.group(1),
                    r.group(2),
                    r.group(3)),
                    match))

        for p, r in replaces:
            sql = sql.replace(p, r, 1)
        chat_logger.info(f"To es: {sql}")

        try:
            tbl = self.es.sql(sql, fetch_size, format)
            return tbl
        except Exception as e:
            chat_logger.error(f"SQL failure: {sql} =>" + str(e))
            return {"error": str(e)}

    def chunk_list(self, doc_id, tenant_id, max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
        s = Search()
        s = s.query(Q("match", doc_id=doc_id))[0:max_count]
        s = s.to_dict()
        es_res = self.es.search(s, idxnm=index_name(tenant_id), timeout="600s", src=fields)
        res = []
        for index, chunk in enumerate(es_res['hits']['hits']):
            res.append({fld: chunk['_source'].get(fld) for fld in fields})
        return res