File size: 13,565 Bytes
ab2ded1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import datetime
import json
import logging
import os
import hashlib
import copy
import re
import sys
import time
import traceback
from functools import partial

from api.db.services.file2document_service import File2DocumentService
from api.settings import retrievaler
from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
from rag.utils.minio_conn import MINIO
from api.db.db_models import close_connection
from rag.settings import database_logger, SVR_QUEUE_NAME
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
from multiprocessing import Pool
import numpy as np
from elasticsearch_dsl import Q, Search
from multiprocessing.context import TimeoutError
from api.db.services.task_service import TaskService
from rag.utils.es_conn import ELASTICSEARCH
from timeit import default_timer as timer
from rag.utils import rmSpace, findMaxTm, num_tokens_from_string

from rag.nlp import search, rag_tokenizer
from io import BytesIO
import pandas as pd

from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, knowledge_graph, email

from api.db import LLMType, ParserType
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import LLMBundle
from api.utils.file_utils import get_project_base_directory
from rag.utils.redis_conn import REDIS_CONN

BATCH_SIZE = 64

FACTORY = {
    "general": naive,
    ParserType.NAIVE.value: naive,
    ParserType.PAPER.value: paper,
    ParserType.BOOK.value: book,
    ParserType.PRESENTATION.value: presentation,
    ParserType.MANUAL.value: manual,
    ParserType.LAWS.value: laws,
    ParserType.QA.value: qa,
    ParserType.TABLE.value: table,
    ParserType.RESUME.value: resume,
    ParserType.PICTURE.value: picture,
    ParserType.ONE.value: one,
    ParserType.AUDIO.value: audio,
    ParserType.EMAIL.value: email,
    ParserType.KG.value: knowledge_graph
}


def set_progress(task_id, from_page=0, to_page=-1,
                 prog=None, msg="Processing..."):
    if prog is not None and prog < 0:
        msg = "[ERROR]" + msg
    cancel = TaskService.do_cancel(task_id)
    if cancel:
        msg += " [Canceled]"
        prog = -1

    if to_page > 0:
        if msg:
            msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
    d = {"progress_msg": msg}
    if prog is not None:
        d["progress"] = prog
    try:
        TaskService.update_progress(task_id, d)
    except Exception as e:
        cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))

    close_connection()
    if cancel:
        sys.exit()


def collect():
    try:
        payload = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", "rag_flow_svr_task_consumer")
        if not payload:
            time.sleep(1)
            return pd.DataFrame()
    except Exception as e:
        cron_logger.error("Get task event from queue exception:" + str(e))
        return pd.DataFrame()

    msg = payload.get_message()
    payload.ack()
    if not msg: return pd.DataFrame()

    if TaskService.do_cancel(msg["id"]):
        cron_logger.info("Task {} has been canceled.".format(msg["id"]))
        return pd.DataFrame()
    tasks = TaskService.get_tasks(msg["id"])
    assert tasks, "{} empty task!".format(msg["id"])
    tasks = pd.DataFrame(tasks)
    if msg.get("type", "") == "raptor":
        tasks["task_type"] = "raptor"
    return tasks


def get_minio_binary(bucket, name):
    return MINIO.get(bucket, name)


def build(row):
    if row["size"] > DOC_MAXIMUM_SIZE:
        set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
                                             (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
        return []

    callback = partial(
        set_progress,
        row["id"],
        row["from_page"],
        row["to_page"])
    chunker = FACTORY[row["parser_id"].lower()]
    try:
        st = timer()
        bucket, name = File2DocumentService.get_minio_address(doc_id=row["doc_id"])
        binary = get_minio_binary(bucket, name)
        cron_logger.info(
            "From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
        cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
                            to_page=row["to_page"], lang=row["language"], callback=callback,
                            kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
        cron_logger.info(
            "Chunkking({}) {}/{}".format(timer() - st, row["location"], row["name"]))
    except TimeoutError as e:
        callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.")
        cron_logger.error(
            "Chunkking {}/{}: Fetch file timeout.".format(row["location"], row["name"]))
        return
    except Exception as e:
        if re.search("(No such file|not found)", str(e)):
            callback(-1, "Can not find file <%s>" % row["name"])
        else:
            callback(-1, f"Internal server error: %s" %
                     str(e).replace("'", ""))
        traceback.print_exc()

        cron_logger.error(
            "Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))

        return

    docs = []
    doc = {
        "doc_id": row["doc_id"],
        "kb_id": [str(row["kb_id"])]
    }
    el = 0
    for ck in cks:
        d = copy.deepcopy(doc)
        d.update(ck)
        md5 = hashlib.md5()
        md5.update((ck["content_with_weight"] +
                    str(d["doc_id"])).encode("utf-8"))
        d["_id"] = md5.hexdigest()
        d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
        d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
        if not d.get("image"):
            docs.append(d)
            continue

        output_buffer = BytesIO()
        if isinstance(d["image"], bytes):
            output_buffer = BytesIO(d["image"])
        else:
            d["image"].save(output_buffer, format='JPEG')

        st = timer()
        MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
        el += timer() - st
        d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
        del d["image"]
        docs.append(d)
    cron_logger.info("MINIO PUT({}):{}".format(row["name"], el))

    return docs


def init_kb(row):
    idxnm = search.index_name(row["tenant_id"])
    if ELASTICSEARCH.indexExist(idxnm):
        return
    return ELASTICSEARCH.createIdx(idxnm, json.load(
        open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))


def embedding(docs, mdl, parser_config={}, callback=None):
    batch_size = 32
    tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
        re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
    tk_count = 0
    if len(tts) == len(cnts):
        tts_ = np.array([])
        for i in range(0, len(tts), batch_size):
            vts, c = mdl.encode(tts[i: i + batch_size])
            if len(tts_) == 0:
                tts_ = vts
            else:
                tts_ = np.concatenate((tts_, vts), axis=0)
            tk_count += c
            callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
        tts = tts_

    cnts_ = np.array([])
    for i in range(0, len(cnts), batch_size):
        vts, c = mdl.encode(cnts[i: i + batch_size])
        if len(cnts_) == 0:
            cnts_ = vts
        else:
            cnts_ = np.concatenate((cnts_, vts), axis=0)
        tk_count += c
        callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
    cnts = cnts_

    title_w = float(parser_config.get("filename_embd_weight", 0.1))
    vects = (title_w * tts + (1 - title_w) *
             cnts) if len(tts) == len(cnts) else cnts

    assert len(vects) == len(docs)
    for i, d in enumerate(docs):
        v = vects[i].tolist()
        d["q_%d_vec" % len(v)] = v
    return tk_count


def run_raptor(row, chat_mdl, embd_mdl, callback=None):
    vts, _ = embd_mdl.encode(["ok"])
    vctr_nm = "q_%d_vec"%len(vts[0])
    chunks = []
    for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], fields=["content_with_weight", vctr_nm]):
        chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))

    raptor = Raptor(
        row["parser_config"]["raptor"].get("max_cluster", 64),
        chat_mdl,
        embd_mdl,
        row["parser_config"]["raptor"]["prompt"],
        row["parser_config"]["raptor"]["max_token"],
        row["parser_config"]["raptor"]["threshold"]
    )
    original_length = len(chunks)
    raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
    doc = {
        "doc_id": row["doc_id"],
        "kb_id": [str(row["kb_id"])],
        "docnm_kwd": row["name"],
        "title_tks": rag_tokenizer.tokenize(row["name"])
    }
    res = []
    tk_count = 0
    for content, vctr in chunks[original_length:]:
        d = copy.deepcopy(doc)
        md5 = hashlib.md5()
        md5.update((content + str(d["doc_id"])).encode("utf-8"))
        d["_id"] = md5.hexdigest()
        d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
        d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
        d[vctr_nm] = vctr.tolist()
        d["content_with_weight"] = content
        d["content_ltks"] = rag_tokenizer.tokenize(content)
        d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
        res.append(d)
        tk_count += num_tokens_from_string(content)
    return res, tk_count


def main():
    rows = collect()
    if len(rows) == 0:
        return

    for _, r in rows.iterrows():
        callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
        try:
            embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
        except Exception as e:
            callback(-1, msg=str(e))
            cron_logger.error(str(e))
            continue

        if r.get("task_type", "") == "raptor":
            try:
                chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
                cks, tk_count = run_raptor(r, chat_mdl, embd_mdl, callback)
            except Exception as e:
                callback(-1, msg=str(e))
                cron_logger.error(str(e))
                continue
        else:
            st = timer()
            cks = build(r)
            cron_logger.info("Build chunks({}): {}".format(r["name"], timer() - st))
            if cks is None:
                continue
            if not cks:
                callback(1., "No chunk! Done!")
                continue
            # TODO: exception handler
            ## set_progress(r["did"], -1, "ERROR: ")
            callback(
                msg="Finished slicing files(%d). Start to embedding the content." %
                    len(cks))
            st = timer()
            try:
                tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
            except Exception as e:
                callback(-1, "Embedding error:{}".format(str(e)))
                cron_logger.error(str(e))
                tk_count = 0
            cron_logger.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
            callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer() - st))

        init_kb(r)
        chunk_count = len(set([c["_id"] for c in cks]))
        st = timer()
        es_r = ""
        es_bulk_size = 16
        for b in range(0, len(cks), es_bulk_size):
            es_r = ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]))
            if b % 128 == 0:
                callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")

        cron_logger.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
        if es_r:
            callback(-1, "Index failure!")
            ELASTICSEARCH.deleteByQuery(
                Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
            cron_logger.error(str(es_r))
        else:
            if TaskService.do_cancel(r["id"]):
                ELASTICSEARCH.deleteByQuery(
                    Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
                continue
            callback(1., "Done!")
            DocumentService.increment_chunk_num(
                r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
            cron_logger.info(
                "Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
                    r["id"], tk_count, len(cks), timer() - st))


if __name__ == "__main__":
    peewee_logger = logging.getLogger('peewee')
    peewee_logger.propagate = False
    peewee_logger.addHandler(database_logger.handlers[0])
    peewee_logger.setLevel(database_logger.level)

    while True:
        main()