Spaces:
Paused
Paused
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
from tika import parser | |
from io import BytesIO | |
from docx import Document | |
from timeit import default_timer as timer | |
import re | |
from deepdoc.parser.pdf_parser import PlainParser | |
from rag.nlp import rag_tokenizer, naive_merge, tokenize_table, tokenize_chunks, find_codec, concat_img, naive_merge_docx, tokenize_chunks_docx | |
from deepdoc.parser import PdfParser, ExcelParser, DocxParser, HtmlParser, JsonParser, MarkdownParser, TxtParser | |
from rag.settings import cron_logger | |
from rag.utils import num_tokens_from_string | |
from PIL import Image | |
from functools import reduce | |
from markdown import markdown | |
from docx.image.exceptions import UnrecognizedImageError | |
class Docx(DocxParser): | |
def __init__(self): | |
pass | |
def get_picture(self, document, paragraph): | |
img = paragraph._element.xpath('.//pic:pic') | |
if not img: | |
return None | |
img = img[0] | |
embed = img.xpath('.//a:blip/@r:embed')[0] | |
related_part = document.part.related_parts[embed] | |
try: | |
image_blob = related_part.image.blob | |
except UnrecognizedImageError: | |
print("Unrecognized image format. Skipping image.") | |
return None | |
try: | |
image = Image.open(BytesIO(image_blob)).convert('RGB') | |
return image | |
except Exception as e: | |
return None | |
def __clean(self, line): | |
line = re.sub(r"\u3000", " ", line).strip() | |
return line | |
def __call__(self, filename, binary=None, from_page=0, to_page=100000): | |
self.doc = Document( | |
filename) if not binary else Document(BytesIO(binary)) | |
pn = 0 | |
lines = [] | |
last_image = None | |
for p in self.doc.paragraphs: | |
if pn > to_page: | |
break | |
if from_page <= pn < to_page: | |
current_image = None | |
if p.text.strip(): | |
if p.style.name == 'Caption': | |
former_image = None | |
if lines and lines[-1][1] and lines[-1][2] != 'Caption': | |
former_image = lines[-1][1].pop() | |
elif last_image: | |
former_image = last_image | |
last_image = None | |
lines.append((self.__clean(p.text), [former_image], p.style.name)) | |
else: | |
current_image = self.get_picture(self.doc, p) | |
image_list = [current_image] | |
if last_image: | |
image_list.insert(0, last_image) | |
last_image = None | |
lines.append((self.__clean(p.text), image_list, p.style.name)) | |
else: | |
if current_image := self.get_picture(self.doc, p): | |
if lines: | |
lines[-1][1].append(current_image) | |
else: | |
last_image = current_image | |
for run in p.runs: | |
if 'lastRenderedPageBreak' in run._element.xml: | |
pn += 1 | |
continue | |
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml: | |
pn += 1 | |
new_line = [(line[0], reduce(concat_img, line[1]) if line[1] else None) for line in lines] | |
tbls = [] | |
for tb in self.doc.tables: | |
html= "<table>" | |
for r in tb.rows: | |
html += "<tr>" | |
i = 0 | |
while i < len(r.cells): | |
span = 1 | |
c = r.cells[i] | |
for j in range(i+1, len(r.cells)): | |
if c.text == r.cells[j].text: | |
span += 1 | |
i = j | |
i += 1 | |
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>" | |
html += "</tr>" | |
html += "</table>" | |
tbls.append(((None, html), "")) | |
return new_line, tbls | |
class Pdf(PdfParser): | |
def __call__(self, filename, binary=None, from_page=0, | |
to_page=100000, zoomin=3, callback=None): | |
start = timer() | |
callback(msg="OCR is running...") | |
self.__images__( | |
filename if not binary else binary, | |
zoomin, | |
from_page, | |
to_page, | |
callback | |
) | |
callback(msg="OCR finished") | |
cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start)) | |
start = timer() | |
self._layouts_rec(zoomin) | |
callback(0.63, "Layout analysis finished.") | |
self._table_transformer_job(zoomin) | |
callback(0.65, "Table analysis finished.") | |
self._text_merge() | |
callback(0.67, "Text merging finished") | |
tbls = self._extract_table_figure(True, zoomin, True, True) | |
#self._naive_vertical_merge() | |
self._concat_downward() | |
#self._filter_forpages() | |
cron_logger.info("layouts: {}".format(timer() - start)) | |
return [(b["text"], self._line_tag(b, zoomin)) | |
for b in self.boxes], tbls | |
class Markdown(MarkdownParser): | |
def __call__(self, filename, binary=None): | |
txt = "" | |
tbls = [] | |
if binary: | |
encoding = find_codec(binary) | |
txt = binary.decode(encoding, errors="ignore") | |
else: | |
with open(filename, "r") as f: | |
txt = f.read() | |
remainder, tables = self.extract_tables_and_remainder(f'{txt}\n') | |
sections = [] | |
tbls = [] | |
for sec in remainder.split("\n"): | |
if num_tokens_from_string(sec) > 10 * self.chunk_token_num: | |
sections.append((sec[:int(len(sec)/2)], "")) | |
sections.append((sec[int(len(sec)/2):], "")) | |
else: | |
sections.append((sec, "")) | |
print(tables) | |
for table in tables: | |
tbls.append(((None, markdown(table, extensions=['markdown.extensions.tables'])), "")) | |
return sections, tbls | |
def chunk(filename, binary=None, from_page=0, to_page=100000, | |
lang="Chinese", callback=None, **kwargs): | |
""" | |
Supported file formats are docx, pdf, excel, txt. | |
This method apply the naive ways to chunk files. | |
Successive text will be sliced into pieces using 'delimiter'. | |
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'. | |
""" | |
eng = lang.lower() == "english" # is_english(cks) | |
parser_config = kwargs.get( | |
"parser_config", { | |
"chunk_token_num": 128, "delimiter": "\n!?。;!?", "layout_recognize": True}) | |
doc = { | |
"docnm_kwd": filename, | |
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename)) | |
} | |
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) | |
res = [] | |
pdf_parser = None | |
sections = [] | |
if re.search(r"\.docx$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
sections, tbls = Docx()(filename, binary) | |
res = tokenize_table(tbls, doc, eng) # just for table | |
callback(0.8, "Finish parsing.") | |
st = timer() | |
chunks, images = naive_merge_docx( | |
sections, int(parser_config.get( | |
"chunk_token_num", 128)), parser_config.get( | |
"delimiter", "\n!?。;!?")) | |
if kwargs.get("section_only", False): | |
return chunks | |
res.extend(tokenize_chunks_docx(chunks, doc, eng, images)) | |
cron_logger.info("naive_merge({}): {}".format(filename, timer() - st)) | |
return res | |
elif re.search(r"\.pdf$", filename, re.IGNORECASE): | |
pdf_parser = Pdf( | |
) if parser_config.get("layout_recognize", True) else PlainParser() | |
sections, tbls = pdf_parser(filename if not binary else binary, | |
from_page=from_page, to_page=to_page, callback=callback) | |
res = tokenize_table(tbls, doc, eng) | |
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
excel_parser = ExcelParser() | |
sections = [(l, "") for l in excel_parser.html(binary) if l] | |
elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt)$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
sections = TxtParser()(filename,binary,parser_config.get("chunk_token_num", 128)) | |
callback(0.8, "Finish parsing.") | |
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
sections, tbls = Markdown(int(parser_config.get("chunk_token_num", 128)))(filename, binary) | |
res = tokenize_table(tbls, doc, eng) | |
callback(0.8, "Finish parsing.") | |
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
sections = HtmlParser()(filename, binary) | |
sections = [(l, "") for l in sections if l] | |
callback(0.8, "Finish parsing.") | |
elif re.search(r"\.json$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
sections = JsonParser(int(parser_config.get("chunk_token_num", 128)))(binary) | |
sections = [(l, "") for l in sections if l] | |
callback(0.8, "Finish parsing.") | |
elif re.search(r"\.doc$", filename, re.IGNORECASE): | |
callback(0.1, "Start to parse.") | |
binary = BytesIO(binary) | |
doc_parsed = parser.from_buffer(binary) | |
sections = doc_parsed['content'].split('\n') | |
sections = [(l, "") for l in sections if l] | |
callback(0.8, "Finish parsing.") | |
else: | |
raise NotImplementedError( | |
"file type not supported yet(pdf, xlsx, doc, docx, txt supported)") | |
st = timer() | |
chunks = naive_merge( | |
sections, int(parser_config.get( | |
"chunk_token_num", 128)), parser_config.get( | |
"delimiter", "\n!?。;!?")) | |
if kwargs.get("section_only", False): | |
return chunks | |
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser)) | |
cron_logger.info("naive_merge({}): {}".format(filename, timer() - st)) | |
return res | |
if __name__ == "__main__": | |
import sys | |
def dummy(prog=None, msg=""): | |
pass | |
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy) | |