ragflow / rag /app /table.py
zxsipola123456's picture
Upload 769 files
ab2ded1 verified
raw
history blame
9.29 kB
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import re
from io import BytesIO
from xpinyin import Pinyin
import numpy as np
import pandas as pd
from openpyxl import load_workbook
from dateutil.parser import parse as datetime_parse
from api.db.services.knowledgebase_service import KnowledgebaseService
from rag.nlp import rag_tokenizer, is_english, tokenize, find_codec
from deepdoc.parser import ExcelParser
class Excel(ExcelParser):
def __call__(self, fnm, binary=None, from_page=0,
to_page=10000000000, callback=None):
if not binary:
wb = load_workbook(fnm)
else:
wb = load_workbook(BytesIO(binary))
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails, done = [], [], 0
rn = 0
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
if not rows:continue
headers = [cell.value for cell in rows[0]]
missed = set([i for i, h in enumerate(headers) if h is None])
headers = [
cell.value for i,
cell in enumerate(
rows[0]) if i not in missed]
if not headers:continue
data = []
for i, r in enumerate(rows[1:]):
rn += 1
if rn - 1 < from_page:
continue
if rn - 1 >= to_page:
break
row = [
cell.value for ii,
cell in enumerate(r) if ii not in missed]
if len(row) != len(headers):
fails.append(str(i))
continue
data.append(row)
done += 1
res.append(pd.DataFrame(np.array(data), columns=headers))
callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
def trans_datatime(s):
try:
return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S")
except Exception as e:
pass
def trans_bool(s):
if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$",
str(s).strip(), flags=re.IGNORECASE):
return "yes"
if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE):
return "no"
def column_data_type(arr):
arr = list(arr)
uni = len(set([a for a in arr if a is not None]))
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
trans = {t: f for f, t in
[(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
for a in arr:
if a is None:
continue
if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
counts["int"] += 1
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
counts["float"] += 1
elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE):
counts["bool"] += 1
elif trans_datatime(str(a)):
counts["datetime"] += 1
else:
counts["text"] += 1
counts = sorted(counts.items(), key=lambda x: x[1] * -1)
ty = counts[0][0]
for i in range(len(arr)):
if arr[i] is None:
continue
try:
arr[i] = trans[ty](str(arr[i]))
except Exception as e:
arr[i] = None
# if ty == "text":
# if len(arr) > 128 and uni / len(arr) < 0.1:
# ty = "keyword"
return arr, ty
def chunk(filename, binary=None, from_page=0, to_page=10000000000,
lang="Chinese", callback=None, **kwargs):
"""
Excel and csv(txt) format files are supported.
For csv or txt file, the delimiter between columns is TAB.
The first line must be column headers.
Column headers must be meaningful terms inorder to make our NLP model understanding.
It's good to enumerate some synonyms using slash '/' to separate, and even better to
enumerate values using brackets like 'gender/sex(male, female)'.
Here are some examples for headers:
1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL)
2. 姓名/名字\t电话/手机/微信\t最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)
Every row in table will be treated as a chunk.
"""
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = Excel()
dfs = excel_parser(
filename,
binary,
from_page=from_page,
to_page=to_page,
callback=callback)
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l:
break
txt += l
lines = txt.split("\n")
fails = []
headers = lines[0].split(kwargs.get("delimiter", "\t"))
rows = []
for i, line in enumerate(lines[1:]):
if i < from_page:
continue
if i >= to_page:
break
row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
if len(row) != len(headers):
fails.append(str(i))
continue
rows.append(row)
callback(0.3, ("Extract records: {}~{}".format(from_page, min(len(lines), to_page)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
else:
raise NotImplementedError(
"file type not supported yet(excel, text, csv supported)")
res = []
PY = Pinyin()
fieds_map = {
"text": "_tks",
"int": "_long",
"keyword": "_kwd",
"float": "_flt",
"datetime": "_dt",
"bool": "_kwd"}
for df in dfs:
for n in ["id", "_id", "index", "idx"]:
if n in df.columns:
del df[n]
clmns = df.columns.values
txts = list(copy.deepcopy(clmns))
py_clmns = [
PY.get_pinyins(
re.sub(
r"(/.*|([^()]+?)|\([^()]+?\))",
"",
str(n)),
'_')[0] for n in clmns]
clmn_tys = []
for j in range(len(clmns)):
cln, ty = column_data_type(df[clmns[j]])
clmn_tys.append(ty)
df[clmns[j]] = cln
if ty == "text":
txts.extend([str(c) for c in cln if c])
clmns_map = [(py_clmns[i].lower() + fieds_map[clmn_tys[i]], str(clmns[i]).replace("_", " "))
for i in range(len(clmns))]
eng = lang.lower() == "english" # is_english(txts)
for ii, row in df.iterrows():
d = {
"docnm_kwd": filename,
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
}
row_txt = []
for j in range(len(clmns)):
if row[clmns[j]] is None:
continue
if not str(row[clmns[j]]):
continue
if pd.isna(row[clmns[j]]):
continue
fld = clmns_map[j][0]
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else rag_tokenizer.tokenize(
row[clmns[j]])
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
if not row_txt:
continue
tokenize(d, "; ".join(row_txt), eng)
res.append(d)
KnowledgebaseService.update_parser_config(
kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
callback(0.35, "")
return res
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)