Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import json | |
import math | |
import re | |
import logging | |
import copy | |
from elasticsearch_dsl import Q | |
from rag.nlp import rag_tokenizer, term_weight, synonym | |
class EsQueryer: | |
def __init__(self, es): | |
self.tw = term_weight.Dealer() | |
self.es = es | |
self.syn = synonym.Dealer() | |
self.flds = ["ask_tks^10", "ask_small_tks"] | |
def subSpecialChar(line): | |
return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|~\^])", r"\\\1", line).strip() | |
def isChinese(line): | |
arr = re.split(r"[ \t]+", line) | |
if len(arr) <= 3: | |
return True | |
e = 0 | |
for t in arr: | |
if not re.match(r"[a-zA-Z]+$", t): | |
e += 1 | |
return e * 1. / len(arr) >= 0.7 | |
def rmWWW(txt): | |
patts = [ | |
(r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""), | |
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "), | |
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down) ", " ") | |
] | |
for r, p in patts: | |
txt = re.sub(r, p, txt, flags=re.IGNORECASE) | |
return txt | |
def question(self, txt, tbl="qa", min_match="60%"): | |
txt = re.sub( | |
r"[ :\r\n\t,,。??/`!!&\^%%]+", | |
" ", | |
rag_tokenizer.tradi2simp( | |
rag_tokenizer.strQ2B( | |
txt.lower()))).strip() | |
txt = EsQueryer.rmWWW(txt) | |
if not self.isChinese(txt): | |
tks = rag_tokenizer.tokenize(txt).split(" ") | |
tks_w = self.tw.weights(tks) | |
tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w] | |
tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk] | |
tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk] | |
q = ["{}^{:.4f}".format(tk, w) for tk, w in tks_w if tk] | |
for i in range(1, len(tks_w)): | |
q.append("\"%s %s\"^%.4f" % (tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1])*2)) | |
if not q: | |
q.append(txt) | |
return Q("bool", | |
must=Q("query_string", fields=self.flds, | |
type="best_fields", query=" ".join(q), | |
boost=1)#, minimum_should_match=min_match) | |
), tks | |
def need_fine_grained_tokenize(tk): | |
if len(tk) < 4: | |
return False | |
if re.match(r"[0-9a-z\.\+#_\*-]+$", tk): | |
return False | |
return True | |
qs, keywords = [], [] | |
for tt in self.tw.split(txt)[:256]: # .split(" "): | |
if not tt: | |
continue | |
twts = self.tw.weights([tt]) | |
syns = self.syn.lookup(tt) | |
logging.info(json.dumps(twts, ensure_ascii=False)) | |
tms = [] | |
for tk, w in sorted(twts, key=lambda x: x[1] * -1): | |
sm = rag_tokenizer.fine_grained_tokenize(tk).split(" ") if need_fine_grained_tokenize(tk) else [] | |
sm = [ | |
re.sub( | |
r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+", | |
"", | |
m) for m in sm] | |
sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1] | |
sm = [m for m in sm if len(m) > 1] | |
if len(sm) < 2: | |
sm = [] | |
keywords.append(re.sub(r"[ \\\"']+", "", tk)) | |
if len(keywords) >= 12: break | |
tk_syns = self.syn.lookup(tk) | |
tk = EsQueryer.subSpecialChar(tk) | |
if tk.find(" ") > 0: | |
tk = "\"%s\"" % tk | |
if tk_syns: | |
tk = f"({tk} %s)" % " ".join(tk_syns) | |
if sm: | |
tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % ( | |
" ".join(sm), " ".join(sm)) | |
if tk.strip(): | |
tms.append((tk, w)) | |
tms = " ".join([f"({t})^{w}" for t, w in tms]) | |
if len(twts) > 1: | |
tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts])) | |
if re.match(r"[0-9a-z ]+$", tt): | |
tms = f"(\"{tt}\" OR \"%s\")" % rag_tokenizer.tokenize(tt) | |
syns = " OR ".join( | |
["\"%s\"^0.7" % EsQueryer.subSpecialChar(rag_tokenizer.tokenize(s)) for s in syns]) | |
if syns: | |
tms = f"({tms})^5 OR ({syns})^0.7" | |
qs.append(tms) | |
flds = copy.deepcopy(self.flds) | |
mst = [] | |
if qs: | |
mst.append( | |
Q("query_string", fields=flds, type="best_fields", | |
query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match) | |
) | |
return Q("bool", | |
must=mst, | |
), keywords | |
def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, | |
vtweight=0.7): | |
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity | |
import numpy as np | |
sims = CosineSimilarity([avec], bvecs) | |
tksim = self.token_similarity(atks, btkss) | |
return np.array(sims[0]) * vtweight + \ | |
np.array(tksim) * tkweight, tksim, sims[0] | |
def token_similarity(self, atks, btkss): | |
def toDict(tks): | |
d = {} | |
if isinstance(tks, str): | |
tks = tks.split(" ") | |
for t, c in self.tw.weights(tks): | |
if t not in d: | |
d[t] = 0 | |
d[t] += c | |
return d | |
atks = toDict(atks) | |
btkss = [toDict(tks) for tks in btkss] | |
return [self.similarity(atks, btks) for btks in btkss] | |
def similarity(self, qtwt, dtwt): | |
if isinstance(dtwt, type("")): | |
dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt))} | |
if isinstance(qtwt, type("")): | |
qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt))} | |
s = 1e-9 | |
for k, v in qtwt.items(): | |
if k in dtwt: | |
s += v # * dtwt[k] | |
q = 1e-9 | |
for k, v in qtwt.items(): | |
q += v # * v | |
#d = 1e-9 | |
# for k, v in dtwt.items(): | |
# d += v * v | |
return s / q / max(1, math.sqrt(math.log10(max(len(qtwt.keys()), len(dtwt.keys())))))# math.sqrt(q) / math.sqrt(d) | |