Spaces:
Paused
Paused
from jina import Deployment | |
from docarray import BaseDoc | |
from jina import Executor, requests | |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | |
import argparse | |
import torch | |
class Prompt(BaseDoc): | |
message: list[dict] | |
gen_conf: dict | |
class Generation(BaseDoc): | |
text: str | |
tokenizer = None | |
model_name = "" | |
class TokenStreamingExecutor(Executor): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map="auto", torch_dtype="auto" | |
) | |
async def generate(self, doc: Prompt, **kwargs) -> Generation: | |
text = tokenizer.apply_chat_template( | |
doc.message, | |
tokenize=False, | |
) | |
inputs = tokenizer([text], return_tensors="pt") | |
generation_config = GenerationConfig( | |
**doc.gen_conf, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
generated_ids = self.model.generate( | |
inputs.input_ids, generation_config=generation_config | |
) | |
generated_ids = [ | |
output_ids[len(input_ids) :] | |
for input_ids, output_ids in zip(inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
yield Generation(text=response) | |
async def task(self, doc: Prompt, **kwargs) -> Generation: | |
text = tokenizer.apply_chat_template( | |
doc.message, | |
tokenize=False, | |
) | |
input = tokenizer([text], return_tensors="pt") | |
input_len = input["input_ids"].shape[1] | |
max_new_tokens = 512 | |
if "max_new_tokens" in doc.gen_conf: | |
max_new_tokens = doc.gen_conf.pop("max_new_tokens") | |
generation_config = GenerationConfig( | |
**doc.gen_conf, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
for _ in range(max_new_tokens): | |
output = self.model.generate( | |
**input, max_new_tokens=1, generation_config=generation_config | |
) | |
if output[0][-1] == tokenizer.eos_token_id: | |
break | |
yield Generation( | |
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True) | |
) | |
input = { | |
"input_ids": output, | |
"attention_mask": torch.ones(1, len(output[0])), | |
} | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_name", type=str, help="Model name or path") | |
parser.add_argument("--port", default=12345, type=int, help="Jina serving port") | |
args = parser.parse_args() | |
model_name = args.model_name | |
tokenizer = AutoTokenizer.from_pretrained(args.model_name) | |
with Deployment( | |
uses=TokenStreamingExecutor, port=args.port, protocol="grpc" | |
) as dep: | |
dep.block() | |