# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re from functools import partial import pandas as pd from api.db import LLMType from api.db.services.llm_service import LLMBundle from api.settings import retrievaler from agent.component.base import ComponentBase, ComponentParamBase class GenerateParam(ComponentParamBase): """ Define the Generate component parameters. """ def __init__(self): super().__init__() self.llm_id = "" self.prompt = "" self.max_tokens = 0 self.temperature = 0 self.top_p = 0 self.presence_penalty = 0 self.frequency_penalty = 0 self.cite = True self.parameters = [] def check(self): self.check_decimal_float(self.temperature, "[Generate] Temperature") self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty") self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty") self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens") self.check_decimal_float(self.top_p, "[Generate] Top P") self.check_empty(self.llm_id, "[Generate] LLM") # self.check_defined_type(self.parameters, "Parameters", ["list"]) def gen_conf(self): conf = {} if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens if self.temperature > 0: conf["temperature"] = self.temperature if self.top_p > 0: conf["top_p"] = self.top_p if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty return conf class Generate(ComponentBase): component_name = "Generate" def get_dependent_components(self): cpnts = [para["component_id"] for para in self._param.parameters] return cpnts def set_cite(self, retrieval_res, answer): answer, idx = retrievaler.insert_citations(answer, [ck["content_ltks"] for _, ck in retrieval_res.iterrows()], [ck["vector"] for _, ck in retrieval_res.iterrows()], LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()), tkweight=0.7, vtweight=0.3) doc_ids = set([]) recall_docs = [] for i in idx: did = retrieval_res.loc[int(i), "doc_id"] if did in doc_ids: continue doc_ids.add(did) recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]}) del retrieval_res["vector"] del retrieval_res["content_ltks"] reference = { "chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()], "doc_aggs": recall_docs } if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'" res = {"content": answer, "reference": reference} return res def _run(self, history, **kwargs): chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id) prompt = self._param.prompt retrieval_res = self.get_input() input = (" - " + "\n - ".join(retrieval_res["content"])) if "content" in retrieval_res else "" for para in self._param.parameters: cpn = self._canvas.get_component(para["component_id"])["obj"] _, out = cpn.output(allow_partial=False) if "content" not in out.columns: kwargs[para["key"]] = "Nothing" else: kwargs[para["key"]] = " - " + "\n - ".join(out["content"]) kwargs["input"] = input for n, v in kwargs.items(): # prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt) prompt = re.sub(r"\{%s\}" % n, str(v), prompt) downstreams = self._canvas.get_component(self._id)["downstream"] if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[ "obj"].component_name.lower() == "answer": return partial(self.stream_output, chat_mdl, prompt, retrieval_res) if "empty_response" in retrieval_res.columns: return Generate.be_output(input) ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf()) if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns: df = self.set_cite(retrieval_res, ans) return pd.DataFrame(df) return Generate.be_output(ans) def stream_output(self, chat_mdl, prompt, retrieval_res): res = None if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]): res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []} yield res self.set_output(res) return answer = "" for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf()): res = {"content": ans, "reference": []} answer = ans yield res if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns: res = self.set_cite(retrieval_res, answer) yield res self.set_output(res)