import re from graphrag.index import build_knowlege_graph_chunks from rag.app import naive from rag.nlp import rag_tokenizer, tokenize_chunks def chunk(filename, binary, tenant_id, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs): parser_config = kwargs.get( "parser_config", { "chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": False}) eng = lang.lower() == "english" parser_config["layout_recognize"] = False sections = naive.chunk(filename, binary, from_page=from_page, to_page=to_page, section_only=True, parser_config=parser_config, callback=callback) chunks = build_knowlege_graph_chunks(tenant_id, sections, callback, parser_config.get("entity_types", ["organization", "person", "location", "event", "time"]) ) for c in chunks: c["docnm_kwd"] = filename doc = { "docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename)), "knowledge_graph_kwd": "text" } doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) chunks.extend(tokenize_chunks(sections, doc, eng)) return chunks